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1 State space representation

In general case an autoregressive system1 can be represented as in a state space
under the form
Ty = Az +Kogy,
y = C-zytey,
where x; is an unobservalbe vector of k x 1 state variables,

Yz is a vector [ x 1 observable variables,
€t is an ergotic strictly stationary proccess:

E{e:|Z:_1} =0, klim E{eie}|.Fi 1} = Qo = Egse, > 0,
—>00

4 .
Eepj <oo, j=1,....5,

with %, = of{ey,e4-1,...} and &, ; is an j entry of the vector Bekropa &;, Bauer
(2008).

Eliminating ¢; we have

$t+1 = A * Tty

Y = (OX T,

where z; is an unobservable vector of k x 1 state variables,
Yz is a vector [ x 1 observable variables.

*This report is the personal position of the author. The results should not be considered,
is the official position of the Bank of Russia.
Lwhich is equivalent to ARMA representation, see 4.2 8 Aoki (1987).



The Hankel matrix has the form

Y1 Y2 . Ym
Y2 Y3 oo Ympl

H= . . . . = Fl:n : Ql:m
Yn Yn+1 oo Yntm-—1

and can be expressed via the matrix of observability I';.,, and the controllability
matrix Q1.,,:

C
C-A
Ty = . ) Qi = (xl Az ... Am1 'xl) »

C. An—l

where n = [%], m=T-—-n+1.
Kung’s method [1] of extracting of a subspace is based on a singular decom-

position of the Hankel matrix
H=U-S-V/,

where U and V are orthogonal matrices and the diagonal matrix S contains
only real positive singular values in the decreasing order which are related to
principal components.

One can extract components related to a useful signal. For example let’s
take the first k principal components:

U= ( Uir Uptin )a V= ( Vik Vitin )’ S= ( S(l):k Skgy ) '

Then we can restore denoised signal H = Uy, - S1. - V'l:,C and estimate A via
OLS using I'1., = Uy.g - Sy

I‘l:n—l A= I‘Q:n = A = fin—l : f‘2:na

with 1., = V.. this allows us to forecast the trend of future signal for h
periods.
Jran =T, A" Q,,.

2 Example: GDP at current prices
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Figure 1: Principal components: 12345
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Figure 2: Principal components: 1 5 7 10
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Figure 3: Nominal GDP folded from its components
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Figure 4: Using of BBII in prices 2021. Principal components: 1234 5



1.8

1.6

1.4

0.2

3.8

2.6

O 0000 O

noTpebieHne
rOCTPATHI
WHBECTUIUT
B KaIUTaJj
IKCIIOPT
UMITOPT
AIIPOKCUMAITAS
IIPOTHO3

t t t t —
2014 2016 2018 2020 2022

Figure 5: Principal components: 1 5 7 10
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Figure 6: GDP in prices of 2021, folded from its components
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Figure 7: Nominal GDP gap
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Figure 8: Gap of GDP in prices of 2021



Conclusion

. Using the Kung method of state subspace extraction, it is possible to

smooth out a multidimensional series of macro variables, eliminating the
main components associated with seasonal characteristics.

. One can extrapolate the series to the forward periods and add its compo-

nents to obtain a forecast of GDP.

. It is possible to estimate the output gap by components that do not include

seasonality and trend.

. Comparison with econometric models shows high predictive properties.
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