
Citation: Fantazzini, Dean, and

Yufeng Xiao. 2023. Detecting

Pump-and-Dumps with Crypto-

Assets: Dealing with Imbalanced

Datasets and Insiders’ Anticipated

Purchases. Econometrics 11: 22.

https://doi.org/10.3390/

econometrics11030022

Academic Editor: Massimiliano

Caporin

Received: 11 May 2023

Revised: 20 July 2023

Accepted: 21 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

econometrics

Article

Detecting Pump-and-Dumps with Crypto-Assets: Dealing with
Imbalanced Datasets and Insiders’ Anticipated Purchases
Dean Fantazzini 1,2,*,† and Yufeng Xiao 1,†

1 Moscow School of Economics, Moscow State University, 119992 Moscow, Russia
2 Higher School of Economics, Faculty of Economic Sciences, 109028 Moscow, Russia
* Correspondence: fantazzini@mse-msu.ru
† These authors contributed equally to this work.

Abstract: Detecting pump-and-dump schemes involving cryptoassets with high-frequency data is
challenging due to imbalanced datasets and the early occurrence of unusual trading volumes. To
address these issues, we propose constructing synthetic balanced datasets using resampling methods
and flagging a pump-and-dump from the moment of public announcement up to 60 min beforehand.
We validated our proposals using data from Pumpolymp and the CryptoCurrency eXchange Trading
Library to identify 351 pump signals relative to the Binance crypto exchange in 2021 and 2022. We
found that the most effective approach was using the original imbalanced dataset with pump-and-
dumps flagged 60 min in advance, together with a random forest model with data segmented into 30-s
chunks and regressors computed with a moving window of 1 h. Our analysis revealed that a better
balance between sensitivity and specificity could be achieved by simply selecting an appropriate
probability threshold, such as setting the threshold close to the observed prevalence in the original
dataset. Resampling methods were useful in some cases, but threshold-independent measures were
not affected. Moreover, detecting pump-and-dumps in real-time involves high-dimensional data,
and the use of resampling methods to build synthetic datasets can be time-consuming, making them
less practical.

Keywords: pump-and-dump; crypto-assets; minority class; class imbalance; machine learning;
random forests

1. Introduction

A cryptocurrency is a form of digital currency that uses strong encryption and a ledger
for protection. It allows users to buy goods and services online and is usually traded
for speculative purposes. Blockchain technology is the backbone of a cryptocurrency,
enabling it to function through a decentralized, distributed system that records transactions
on multiple computers; see Antonopoulos (2014), Narayanan et al. (2016) for a technical
discussion at the textbook level. At the time of writing this paper, there were over 10,000
publicly traded cryptocurrencies, with a total market value exceeding USD 2.2 trillion as of
1 March 2022, according to CoinMarketCap.com, accessed on 1 December 2022.

The unregulated nature of the cryptocurrency market has led to the emergence of
pump-and-dump schemes, a traditional form of securities fraud. Fraudsters use social
media platforms such as Telegram, Discord, and Twitter to initially spread false information
and manipulate the price of low market-cap crypto assets. They then sell their holdings to
make a profit, causing the price to fall and investors to lose money.

Kamps and Kleinberg (2018) and La Morgia et al. (2020, 2023) examined large sets
of pumps-and-dumps and proposed several market-based approaches to detect them.
Unfortunately, the detection of pump-and-dumps with crypto assets and high-frequency
data involves imbalanced datasets where the minority class flagging the pump-and-dumps
is very small (usually less than 0.2% of all cases). Moreover, even if the VIP members of
the social media groups organizing these market manipulations are supposed to receive

Econometrics 2023, 11, 22. https://doi.org/10.3390/econometrics11030022 https://www.mdpi.com/journal/econometrics

https://doi.org/10.3390/econometrics11030022
https://doi.org/10.3390/econometrics11030022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0002-1481-3382
CoinMarketCap.com
https://doi.org/10.3390/econometrics11030022
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics11030022?type=check_update&version=1

Econometrics 2023, 11, 22 2 of 73

detailed information about them seconds or minutes before the general public (and they
pay a fee for such a service), in reality, unusual trading volumes can take place much
earlier. These two problems can strongly affect the performance of any classifier used to
flag potential pump-and-dump activity.

This study aims to solve these issues by building synthetic balanced datasets and
enlarging the time sample flagging a pump-and-dump. The goal is to make it easier for
investors to make informed decisions, and for financial regulators to prevent fraudulent
activities in the cryptocurrency market.

To reach the paper’s objective, we built synthetic balanced datasets generated accord-
ing to four remedies for class imbalances proposed in the statistical literature. Moreover,
we flagged a pump-and-dump from the minute of the public announcement up to 60 min
before it. This simple solution was able to both deal with the insiders’ anticipated purchases
of the targeted crypto-assets and to solve the issue of imbalanced datasets. An empirical
analysis with 351 pump-and-dumps that took place in 2021–2022 and a set of machine
learning methods to detect these illegal activities confirmed the validity of the proposed
solutions.

The paper is organized as follows: Section 2 reviews the literature devoted to cryptocur-
rency price manipulation and pump-and-dumps, while the methods proposed to detect
pump-and-dump schemes are discussed in Section 3. The empirical results are reported in
Section 4, while robustness checks are discussed in Section 5. Section 6 briefly concludes.

2. Literature Review
2.1. Pump-and-Dumps

In the last two decades, the financial literature has extensively examined “pump-and-
dump” schemes, which are fraudulent practices involving the artificial inflation of stock
prices through deceptive statements. These schemes aim to sell overvalued securities for a
profit, leaving unsuspecting buyers with worthless investments. Researchers have focused
on understanding the mechanics of these schemes, their impact on small retail investors,
market efficiency, and the role of regulators in prevention.

Zaki et al. (2012) present a case study and propose architectural solutions to detect
and prevent “pump-and-dump” schemes. They use simulations to demonstrate the manip-
ulation’s effects on market stability and investor confidence.

Withanawasam et al. (2013) develop a framework for market manipulation, specifi-
cally in a limit-order market. They show that “pump-and-dump” manipulation becomes
profitable in the presence of technical traders, who exploit information asymmetry and
generate profits by raising prices and selling immediately.

Bouraoui (2015) analyzes the impact of stock spam on stock prices and investor
behavior. Despite investors’ awareness of scams, the study finds that stock prices increase
due to information asymmetry and the influence of spammers.

Siering (2019) examine the economics of “pump-and-dump” schemes in internet-
based stock promotion. They analyze the schemes’ financial and organizational structures,
participants’ incentives, and their effects on stock prices and investor behavior. The article
emphasizes the need for increased regulation to protect investors and maintain market
stability.

Ouyang and Cao (2020) investigate pump-and-dump events in the Chinese stock
market. They find that smaller, less liquid stocks are more vulnerable to manipulation,
and indicators such as market capitalization, free float, and liquidity provide insights into
manipulators’ allocation strategies.

Additionally, several academic and professional surveys provide general introduc-
tions to pump-and-dump schemes in financial markets; see US Security and Exchange
Commission (2005), Krinklebine (2010), and Frieder and Zittrain (2008).

Econometrics 2023, 11, 22 3 of 73

2.2. Cryptocurrency Pump-and-Dumps

The surge of cryptocurrencies in an unregulated environment has raised concerns
about fraudulent activities, leading to a growing body of literature investigating pump-and-
dump schemes in the cryptocurrency market. These schemes involve coordinated efforts
to inflate the price of a specific cryptocurrency for personal profit. Social media platforms
such as Telegram and Discord have been identified as common platforms for these schemes.
Studies have explored the factors influencing the success of pump-and-dump schemes, the
effectiveness of machine learning models in detecting and predicting these schemes, and
the impact of such schemes on the cryptocurrency market.

Feder et al. (2018) examined pump-and-dump schemes on Telegram and Discord,
identifying factors such as low market capitalization and liquidity that make certain cryp-
tocurrencies more susceptible to targeting by pump groups. Similarly, Dhawan and Putnin, š
(2023) highlighted the correlation between low liquidity and higher abnormal returns
in cryptocurrencies, indicating the significance of liquidity in these schemes. Victor and
Hagemann (2019) compared pump-and-dump schemes in the cryptocurrency market to
penny stock schemes and proposed the use of machine learning for detection.

Xu and Livshits (2019) investigated pump-and-dump events in cryptocurrencies,
analyzing the fake trading volume and high profits obtained by organizers. Their machine
learning models accurately predicted pump likelihoods, yielding significant returns. Using
a similar approach, Shao (2021) employed several supervised learning models, including
random forests, decision trees, and k-nearest neighbors, to detect pump-and-dump schemes
in Dogecoin, with the random forest model being the most effective.

Hamrick et al. (2021) monitored Telegram channels and observed short-term price
increases resulting from pump campaigns, but noted a decline in impact over time. They
differentiated between transparent pumps, which provided clear information such as the
coin name and target profit, and “obscure” pumps, which only hinted at potential price
increases. The results showed that transparent pumps generated higher returns than
obscure pumps. Nghiem et al. (2021) proposed a method using market and social media
signals to predict target cryptocurrencies for pump-and-dump schemes, achieving superior
results compared to existing methods.

Kamps and Kleinberg (2018) developed a machine learning model trained on
pump-and-dump event data to effectively detect these schemes. Based on this analysis,
La Morgia et al. (2020) conducted an in-depth examination of community-organized pumps
and dumps, reporting several case studies and providing a real-time detection classifier
for investors that outperformed all the other competing models. La Morgia et al. (2023)
extended this work by introducing an AdaBoost classifier, which achieved better precision,
recall, and F1-score results.

Overall, these studies contribute to the understanding of pump-and-dump schemes in
the cryptocurrency market, provide insights into detection techniques, and emphasize the
need for regulation to mitigate financial harm to investors.

2.3. The Class Imbalance Problem

The class imbalance problem is a significant challenge in classification tasks. Neglect-
ing class imbalance can lead to severe implications for model estimation and accuracy
evaluation; see the reviews by He and Garcia (2009) and Sun et al. (2009) for more in-depth
discussions. Different classification methods exhibit various behaviors in the presence of
class imbalance. For example, logistic regression underestimates conditional probabilities
of the rare class King and Zeng (2001) and linear discriminant analysis is also affected
by imbalanced class distributions Hand and Vinciotti (2003). Moreover, nonparametric
methods tend to favor classification rules that perform well only on the frequent class
Chawla (2003), Akbani et al. (2004), Cieslak and Chawla (2008).

Research on imbalanced classification focuses on two main approaches: learning level
solutions and data level solutions Kotsiantis et al. (2006). Learning level solutions aim to
enhance the learning process for the minority class by modifying the classifier or adjusting

Econometrics 2023, 11, 22 4 of 73

misclassification costs Riddle et al. (1994), Cieslak and Chawla (2008), Breiman et al. (1984),
Ting (2002), Kukar and Kononenko (1998), Lin et al. (2002). However, cost information is
often unavailable.

Data level solutions focus on altering the class distribution to obtain a more balanced
sample, but methods such as Random Over-Sampling and Random Under-Sampling
have drawbacks such as loss of important data, decrease in sample size, increased risk of
overfitting, and additional computational effort McCarthy et al. (2005).

Recent works propose generating artificial examples similar to the observations
in the minority class to reduce overfitting and improve generalization Lee (1999),
Chawla et al. (2002), Guo and Viktor (2004), Mease et al. (2007), Menardi and Torelli
(2014), and Lunardon et al. (2014).

The accuracy evaluation of classifiers is equally important in class imbalance settings
Weiss and Provost (2001) and Weiss (2004). Common performance measures such as error
rate can be misleading due to their dependence on class distribution. Precision, recall,
F-measure, receiver operating characteristic (ROC) curve, precision-recall curves, and cost
curves are more suitable for evaluation He and Garcia (2009).

Estimating the accuracy measure is challenging in imbalanced learning when there are
few examples of the rare class. Common error estimators include apparent error, holdout
method, bootstrapping, and cross-validation techniques. However, in strongly imbalanced
frameworks, evaluating results on the same data used in training or on a test sample may
lead to high variance estimates and scarcity of rare examples Menardi and Torelli (2014),
Schiavo and Hand (2000).

3. Materials and Methods

Detecting pump-and-dump schemes in the cryptocurrency market using high-frequency
data is a challenging task. This is because such schemes are often associated with imbal-
anced datasets, where the instances of pump-and-dump cases are very rare, usually com-
prising less than 0.2% of all cases. Additionally, it is widely assumed that members of social
media groups that organize these market manipulations are given detailed information
about the scheme seconds or minutes before it is made public; see Kamps and Kleinberg
(2018) and La Morgia et al. (2020, 2023). They pay a fee for such advanced knowledge,
but in reality, unusual trading volumes can occur much earlier than that, complicating the
process of detecting such schemes. These two problems can significantly impact the perfor-
mance of any machine learning classifier used for detecting pump-and-dump activities,
making it difficult to accurately identify such instances in a timely manner.

We will first provide a brief review of the four methods used to address class imbal-
ance in our empirical analysis. In addition, we will present a simple solution to increase
the dimensionality of the minority class, which involves flagging instances of pump-
and-dump schemes from the moment of public announcement up to 60 min prior to it.
Subsequently, we will discuss classification models that are capable of detecting pump-and-
dump schemes.

3.1. Building Synthetic Balanced Datasets

Resolving class imbalance is crucial for accurate prediction models in binary out-
comes. Popular resampling techniques include Random Under-Sampling (RUS), Ran-
dom Over-Sampling (ROS), the Synthetic Minority Over-sampling Technique (SMOTE) by
Chawla et al. (2002), and the Random Over-Sampling Examples (ROSE) by Menardi and
Torelli (2014).

The RUS method reduces the majority class by randomly sampling from it until it
matches the number of minority class samples. The ROS method replicates minority class
observations to achieve balance. SMOTE generates synthetic minority class observations
by interpolating between existing observations and their nearest neighbors. ROSE com-
bines over-sampling and under-sampling by resampling the majority and minority classes

Econometrics 2023, 11, 22 5 of 73

using bootstrap techniques, followed by generating synthetic samples in the feature space
neighborhood Menardi and Torelli (2014).

RUS can be effective when the dataset is large, but may lose information in small
datasets or if the minority class contains important information. ROS works well for small
datasets but may not handle outliers or noisy data. SMOTE is effective for small datasets
with proximity between minority and majority classes, but it may struggle if the minority
class is sparse or if there is high overlap between the minority and majority classes in the
feature space. Moreover, the choice of the number of k nearest minority class neighbors in
SMOTE impacts its effectiveness. ROSE generates synthetic samples representative of the
minority class and is useful for extreme imbalanced learning Menardi and Torelli (2014).
The detailed description of all these resampling methods is reported in Appendix A.

The previous four methods have been shown to effectively balance the data distribu-
tion and improve model performance in several cases, enabling more precise classification
of individuals into high and low risk groups. However, more recent research has revealed
mixed results and has highlighted potential drawbacks associated with these resampling
methods. In certain cases, these methods may even lead to a decline in model performance
and wrong model interpretations; see Tantithamthavorn et al. (2018), Wongvorachan et al.
(2023), and van den Goorbergh et al. (2022).

Given the potential challenges associated with the methods used to address class
imbalance, we propose a simple approach to increasing the size of the minority class in the
context of our dataset, which deals with pump-and-dump schemes involving crypto-assets.
Prior research has suggested that paying VIP members of the social media groups involved
in such market manipulations receive detailed information about them seconds or minutes
before the general public; see, for example, Kamps and Kleinberg (2018) and La Morgia et al.
(2020, 2023), and references therein. However, upon analyzing our dataset, we discovered
that unusual trading volumes can occur much earlier, particularly within 60 min prior to
the public announcement (see Figures A3–A46 in Appendix D). These atypical trades are
likely executed by the true organizers of the pump-and-dump, who are likely the only ones
profiting from these manipulations. As a result, we propose flagging a pump-and-dump
from the minute of the public announcement up to 60 min before it, rather than only 1 or 2
min prior to it, as has been done in the past. This straightforward solution has the potential
to address both insider anticipated purchases of the targeted crypto-assets and the issue
of imbalanced datasets. In addition to the time frame of up to 60 min before the public
announcement, we also experimented with longer time frames, such as up to 24 h before
the announcement. However, the performance metrics obtained from these longer time
frames were worse, and hence were not included in this study.

3.2. Methods for Binary Classification: A (Brief) Review

We employed three different classifiers, namely the logit model, random forests, and
AdaBoost, to detect the onset of fraudulent pump-and-dump schemes. These classifiers
have previously been used in La Morgia et al. (2020, 2023) and have demonstrated superior
performance in detecting such schemes compared to previous state-of-the-art models. We
present a brief overview of these models below, while a more comprehensive discussion at
the textbook level can be found in Hastie et al. (2017).

The logit model can be expressed as follows,

P(Y = 1|X) = exp(β0 + β1X1 + . . . + βpXp)/(1 + exp(β0 + β1X1 + . . . + βpXp))

where P(Y = 1|X) is the probability of Y being 1 given the predictor variables X, β0 is
the intercept, β1, . . . , βp are the parameters associated with each predictor variable, and
X1, . . . , Xp are the predictor variables. In our case, Y = 1 denotes the presence of a
pump-and-dump scheme.

Random forests are an ensemble learning method that combines multiple decision
trees to make a prediction. In a random forest model, multiple decision trees are constructed
using bootstrap samples of the training data and a random subset of the predictor variables.

Econometrics 2023, 11, 22 6 of 73

The final prediction is made by aggregating the predictions of all the individual trees. The
randomness in the tree-building process and the use of multiple trees help to reduce the
overfitting problem and improve the model’s accuracy. The random forest model can be
expressed as follows,

f (X) =
1
M

M

∑
m=1

hm(X)

where f (X) is the predicted outcome variable for a given input X, M is the number of
trees in the forest, hm(X) is the prediction of the m-th tree in the forest for input X, and
∑M

m=1 hm(X) is the aggregated prediction of all the trees.
AdaBoost is another ensemble learning method that combines multiple weak classifiers

to create a strong classifier. In AdaBoost, each weak classifier is trained on a subset of the
training data, and the weights of misclassified data points are increased for the next round
of training. The final prediction is made by aggregating the weighted predictions of all the
individual weak classifiers. The iterative process of training weak classifiers and updating
weights helps the model to improve its accuracy. The AdaBoost model can be expressed as
follows,

f (X) = sign

(
M

∑
m=1

αmhm(X)

)
where f (X) is the predicted outcome variable for a given input X, M is the number of weak
classifiers, hm(X) is the prediction of the m-th weak classifier for input X, αm is the weight
assigned to the m-th weak classifier based on its accuracy, and sign

(
∑M

m=1 αmhm(X)
)

is
the aggregated prediction of all the weak classifiers, where the sign function is used in
the AdaBoost algorithm to convert the weighted sum of base classifiers’ predictions into a
binary prediction.

4. Results
4.1. Data

The main objective of this study is to improve the detection of pump-and-dumps
with crypto assets and high-frequency data in case of imbalanced datasets and insiders’
anticipated purchases. To achieve this goal, we first collected data about pump-and-dump
schemes from Pumpolymp, a website that provides detailed information about all Telegram
groups dealing with crypto pump-and-dumps.1 We collected historical messages from
these Telegram groups by setting keywords such as ‘pump,’ ‘dump,’ ‘coin,’ and ‘buy.’
The available data included group size, targeted coin, pump announcement time, and
pump target price. Because pump events often occur in a short period, we needed a
sufficient number of Telegram group messages as a preprocessing condition to have a valid
pump-and-dump.

Pump-and-dump schemes are typically initiated by fraudsters who organize their
activities using the social platform Telegram, where anyone can be invited to join their
groups. In this study, we tracked the history of Telegram messages for 27 pump-and-dump
groups from 1 June 2021 to 20 September 2022, available on the Pumpolymp website.

After searching the history of messages, we found that there was significant variability
in the different pump-and-dumps schemes used in Telegram groups. Some of the most
active groups sent 5 to 10 messages per day that included investment advice on a wide
variety of coins, as well as detailed information about the advertised pump-and-dumps,
such as coin name, target price, stop-loss price, buy price, and the crypto exchange involved.
Table 1 shows some examples of the reported pump signals.

Econometrics 2023, 11, 22 7 of 73

Table 1. An example of pump-and-dumps signals.

Coin
Symbol Exchange Buy

Range Target 1 Target 2 Target 3 Stop Loss

ADX Binance 800–830 900 1100 1200 750
AGIX Binance 280–290 320 350 380 250
POLY Binance 1020–1050 1150 1200 1300 900
CTSI Binance 720–740 800 900 1100 650
FOR Binance 93–98 110 115 125 90

If the pumped coin reached the target price, a bot automatically sent a message
indicating the profit rate and completion time. We manually retrieved the messages after
the pump signals and the first target prices. Since the historical information collected was
redundant, we filtered the available data by using previous keywords and messages and
by checking the validity of the timing of the pump signal. In this way, we managed to
extract 351 pump signals relative to the Binance crypto exchange that took place in 2021 and
2022. The symbols of the 351 coins and the timing of the pump-and-dumps are reported in
Table 2.

Table 2. Names of cryptoassets (Binance symbols) and dates and time of the announced pump-and-
dumps.

Names Dates and Time Names Dates and Time Names Dates and Time Names Dates and Time

ADX 2022-09-20
15:56:00 ATM 2022-01-12

17:37:00 SNT 2021-10-23
16:31:00 NAS 2021-08-22

17:00:00

IRIS 2022-09-17
13:24:00 ASR 2022-01-09

16:30:00 ADX 2021-10-23
16:15:00 POND 2021-08-22

13:10:00

STEEM 2022-09-16
11:05:00 POWR 2022-01-08

08:10:00 AGIX 2021-10-22
13:28:00 GVT 2021-08-21

16:00:00

BTS 2022-09-15
12:57:00 VIB 2022-01-02

17:12:00 POA 2021-10-21
16:00:00 FOR 2021-08-21

13:04:00

PROM 2022-09-15
08:52:00 NEBL 2022-01-02

17:00:00 EVX 2021-10-21
11:24:00 AION 2021-08-20

13:41:00

REQ 2022-09-11
14:42:00 ATM 2021-12-31

18:32:00 NXS 2021-10-21
10:59:00 WRX 2021-08-20

11:40:00

ARDR 2022-09-11
12:21:00 PIVX 2021-12-28

14:27:00 RDN 2021-10-21
07:41:00 ARPA 2021-08-20

04:13:00

SUPER 2022-09-11
11:54:00 POWR 2021-12-28

14:13:00 BRD 2021-10-20
16:54:00 NU 2021-08-20

02:08:00

AGIX 2022-09-11
09:19:00 PNT 2021-12-26

18:53:00 AVAX 2021-10-19
13:03:00 FOR 2021-08-17

12:03:00

PIVX 2022-09-11
08:41:00 RAMP 2021-12-26

15:45:00 BEAM 2021-10-17
17:48:00 OAX 2021-08-17

02:54:00

GTO 2022-09-06
10:52:00 TCT 2021-12-25

14:13:00 ANT 2021-10-17
07:27:00 CTXC 2021-08-16

05:46:00

CVX 2022-09-06
06:53:00 OG 2021-12-25

13:55:00 WAXP 2021-10-16
17:35:00 ADX 2021-08-15

17:31:00

WABI 2022-09-01
08:32:00 AGIX 2021-12-24

17:21:00 IRIS 2021-10-16
17:14:00 BEAM 2021-08-15

16:48:00

SUPER 2022-08-29
15:19:00 CTXC 2021-12-24

12:49:00 GXS 2021-10-16
16:20:00 RDN 2021-08-15

04:13:00

AION 2022-08-29
10:29:00 NEBL 2021-12-24

12:39:00 PNT 2021-10-15
15:52:00 MDA 2021-08-10

17:38:00

ELF 2022-08-28
09:20:00 RDN 2021-12-17

13:47:00 IRIS 2021-10-14
20:49:00 ARPA 2021-08-10

04:44:00

ADX 2022-08-26
14:08:00 RAMP 2021-12-16

14:52:00 WABI 2021-10-14
15:00:00 ARPA 2021-08-09

17:57:00

CTXC 2022-08-26
12:18:00 AST 2021-12-16

14:04:00 GXS 2021-10-13
14:27:00 AVAX 2021-08-08

13:44:00

Econometrics 2023, 11, 22 8 of 73

Table 2. Cont.

Names Dates and Time Names Dates and Time Names Dates and Time Names Dates and Time

DOCK 2022-08-24
07:37:00 SNT 2021-12-16

12:47:00 POND 2021-10-13
14:16:00 APPC 2021-08-08

01:00:00

AION 2022-08-23
10:43:00 NXS 2021-12-16

02:32:00 BRD 2021-10-12
17:19:00 ANKR 2021-08-07

15:16:00

NEXO 2022-08-20
04:56:00 AST 2021-12-09

06:00:00 SKL 2021-10-12
16:58:00 CTXC 2021-08-07

14:59:00

OAX 2022-08-18
14:03:00 TCT 2021-12-09

02:20:00 VIB 2021-10-12
11:36:00 BRD 2021-08-06

11:34:00

ELF 2022-08-14
11:50:00 QLC 2021-12-08

18:54:00 VIB 2021-10-12
10:27:00 LSK 2021-08-06

03:31:00

VIB 2022-08-14
07:00:00 SNM 2021-12-07

16:00:00 WNXM 2021-10-10
17:00:00 EVX 2021-08-05

04:02:00

IDEX 2022-08-14
06:32:00 GRS 2021-12-06

16:00:00 VIB 2021-10-10
05:31:00 BTS 2021-08-02

23:13:00

WABI 2022-08-14
03:31:00 ADX 2021-12-06

06:45:00 VIB 2021-10-09
17:20:00 NEBL 2021-07-30

09:24:00

PHA 2022-08-11
15:51:00 NEBL 2021-12-05

15:00:00 NXS 2021-10-09
14:38:00 ARPA 2021-07-27

13:47:00

BEAM 2022-08-07
17:40:00 NXS 2021-12-04

12:59:00 POA 2021-10-09
13:13:00 DREP 2021-07-25

17:00:00

SUPER 2022-08-05
08:46:00 ELF 2021-12-02

19:30:00 ADX 2021-10-09
06:27:00 EVX 2021-07-25

15:29:00

BRD 2022-07-30
11:38:00 QSP 2021-11-30

12:31:00 NAV 2021-10-08
16:17:00 NXS 2021-07-25

15:22:00

FOR 2022-07-29
14:55:00 VIB 2021-11-29

07:49:00 SKY 2021-10-08
15:42:00 QLC 2021-07-25

12:03:00

SUPER 2022-07-29
10:39:00 ALPHA 2021-11-29

05:21:00 VIB 2021-10-08
12:40:00 FOR 2021-07-25

04:24:00

AGIX 2022-07-29
08:32:00 VIB 2021-11-28

18:53:00 QSP 2021-10-08
12:10:00 GRS 2021-07-24

16:58:00

VIB 2022-07-27
11:54:00 PHB 2021-11-28

17:00:00 ANT 2021-10-07
05:39:00 GVT 2021-07-24

16:40:00

RNDR 2022-07-24
07:29:00 GRS 2021-11-28

16:01:00 BTCST 2021-10-07
05:27:00 POA 2021-07-23

13:03:00

MDA 2022-07-23
13:16:00 FXS 2021-11-28

15:48:00 QLC 2021-10-05
18:15:00 FOR 2021-07-18

18:34:00

FXS 2022-07-22
11:31:00 VIB 2021-11-28

15:26:00 SKY 2021-10-05
15:00:00 REQ 2021-07-17

16:57:00

DOCK 2022-07-21
10:48:00 FOR 2021-11-28

07:09:00 GTO 2021-10-05
12:54:00 CTSI 2021-07-16

14:50:00

LOKA 2022-07-18
13:00:00 GXS 2021-11-27

16:50:00 EVX 2021-10-03
16:51:00 TRU 2021-07-16

14:35:00

OCEAN 2022-07-17
17:10:00 NXS 2021-11-27

16:37:00 GXS 2021-10-02
17:32:00 POA 2021-07-11

17:00:00

FIO 2022-07-17
15:56:00 TKO 2021-11-27

10:49:00 QLC 2021-10-02
11:03:00 OAX 2021-07-11

12:00:00

VIB 2022-07-16
16:28:00 ELF 2021-11-26

04:19:00 APPC 2021-09-30
14:07:00 VIA 2021-07-10

14:42:00

DOCK 2022-07-16
15:09:00 NAV 2021-11-26

01:21:00 MTH 2021-09-28
14:18:00 FIS 2021-07-07

19:06:00

BEAM 2022-07-16
12:31:00 MDA 2021-11-23

15:00:00 SUPER 2021-09-25
11:07:00 ARPA 2021-07-07

13:35:00

CTXC 2022-07-15
10:08:00 REQ 2021-11-23

11:54:00 FIO 2021-09-23
14:20:00 TWT 2021-07-06

14:30:00

MDT 2022-07-14
18:23:00 ARDR 2021-11-21

13:27:00 NXS 2021-09-22
16:00:00 MDA 2021-07-05

16:14:00

PHA 2022-07-14
11:45:00 PIVX 2021-11-21

11:08:00 EVX 2021-09-22
14:24:00 NEBL 2021-07-05

15:17:00

Econometrics 2023, 11, 22 9 of 73

Table 2. Cont.

Names Dates and Time Names Dates and Time Names Dates and Time Names Dates and Time

LOKA 2022-07-14
05:37:00 NXS 2021-11-20

13:36:00 PNT 2021-09-22
13:14:00 IDEX 2021-07-03

16:12:00

DOCK 2022-07-13
17:06:00 RAMP 2021-11-19

11:03:00 NEBL 2021-09-22
13:07:00 LINK 2021-07-01

21:10:00

HIGH 2022-07-13
09:56:00 APPC 2021-11-16

16:22:00 NAV 2021-09-21
13:50:00 QSP 2021-07-01

19:07:00

PIVX 2022-07-12
15:36:00 NXS 2021-11-16

16:00:00 FXS 2021-09-19
17:00:00 DLT 2021-07-01

17:52:00

MLN 2022-07-12
12:33:00 NAS 2021-11-14

15:00:00 BRD 2021-09-19
14:51:00 OAX 2021-06-29

14:27:00

ADX 2022-07-11
14:09:00 EVX 2021-11-12

16:00:00 AION 2021-09-18
12:47:00 ARPA 2021-06-28

17:30:00

VIB 2022-07-11
13:45:00 ATM 2021-11-12

15:43:00 CTXC 2021-09-15
17:00:00 DOGE 2021-06-27

19:14:00

BEAM 2022-07-09
13:41:00 ASR 2021-11-12

15:36:00 PIVX 2021-09-15
15:29:00 MTH 2021-06-27

17:00:00

OAX 2022-07-01
09:25:00 NAS 2021-11-12

14:37:00 CHZ 2021-09-14
12:30:00 ADX 2021-06-26

16:08:00

ATM 2022-03-22
10:45:00 EVX 2021-11-11

12:29:00 RDN 2021-09-13
18:10:00 ELF 2021-06-24

15:55:00

ASR 2022-03-22
10:08:00 OAX 2021-11-09

16:56:00 GTO 2021-09-12
12:40:00 WABI 2021-06-20

17:00:00

AST 2022-03-19
16:04:00 SUPER 2021-11-09

03:49:00 DLT 2021-09-11
16:00:00 TRU 2021-06-20

14:36:00

ATA 2022-03-16
18:52:00 EPS 2021-11-08

14:12:00 ROSE 2021-09-11
12:22:00 NAV 2021-06-20

11:00:00

MITH 2022-03-14
14:12:00 VIB 2021-11-07

18:58:00 PHB 2021-09-11
11:42:00 VIA 2021-06-19

17:48:00

SNM 2022-03-14
10:00:00 VIB 2021-11-07

17:21:00 ALGO 2021-09-11
07:24:00 CDT 2021-06-18

14:22:00

POND 2022-03-13
14:57:00 MTH 2021-11-07

17:00:00 QLC 2021-09-10
17:41:00 NAS 2021-06-16

16:29:00

FIRO 2022-03-13
09:57:00 NXS 2021-11-06

11:02:00 AVAX 2021-09-10
12:16:00 ARK 2021-06-16

15:09:00

FOR 2022-03-12
06:41:00 NULS 2021-11-05

19:11:00 OAX 2021-09-10
12:13:00 SXP 2021-06-16

10:32:00

MDX 2022-02-15
12:41:00 QSP 2021-11-05

09:46:00 SOL 2021-09-09
17:48:00 CTXC 2021-06-15

16:41:00

OG 2022-02-15
10:26:00 BRD 2021-11-04

13:36:00 FUN 2021-09-09
14:00:00 ONE 2021-06-15

16:36:00

KLAY 2022-02-14
20:10:00 REQ 2021-11-04

13:16:00 NEAR 2021-09-08
08:26:00 REP 2021-06-15

16:00:00

FOR 2022-02-13
15:10:00 BEL 2021-11-04

09:41:00 ADX 2021-09-07
14:28:00 RLC 2021-06-15

15:54:00

SKL 2022-02-13
10:21:00 FIRO 2021-11-03

16:25:00 ALGO 2021-09-06
16:53:00 OST 2021-06-15

15:53:00

NEBL 2022-02-11
14:30:00 MTH 2021-11-03

06:29:00 SFP 2021-09-06
11:06:00 MATIC 2021-06-14

12:31:00

GRS 2022-02-09
14:08:00 OAX 2021-11-02

16:16:00 DOGE 2021-09-05
23:32:00 DLT 2021-06-13

17:01:00

ELF 2022-02-07
14:39:00 CHR 2021-11-01

14:57:00 NXS 2021-09-05
17:39:00 FIO 2021-06-13

17:01:00

BTG 2022-02-07
12:24:00 VIB 2021-10-31

17:06:00 VIB 2021-09-05
17:00:00 LIT 2021-06-13

16:59:00

QLC 2022-02-05
16:50:00 BRD 2021-10-31

15:00:00 MDA 2021-09-05
11:03:00 QSP 2021-06-13

16:00:00

DEGO 2022-02-04
12:30:00 DUSK 2021-10-31

09:29:00 PNT 2021-09-04
18:00:00 GVT 2021-06-12

14:45:00

Econometrics 2023, 11, 22 10 of 73

Table 2. Cont.

Names Dates and Time Names Dates and Time Names Dates and Time Names Dates and Time

AGIX 2022-02-03
14:40:00 NEBL 2021-10-30

17:30:00 ALPHA 2021-09-02
17:03:00 POA 2021-06-11

14:54:00

BICO 2022-02-03
12:54:00 RDN 2021-10-30

16:06:00 CHZ 2021-09-01
08:38:00 QLC 2021-06-09

16:13:00

OG 2022-02-03
09:49:00 NXS 2021-10-30

05:24:00 SKL 2021-08-30
18:40:00 WABI 2021-06-07

13:28:00

MDX 2022-02-02
18:04:00 VIB 2021-10-27

21:13:00 BRD 2021-08-29
17:00:00 CND 2021-06-06

17:00:00

ASR 2022-01-27
12:19:00 ARDR 2021-10-26

17:06:00 ICP 2021-08-29
13:38:00 MTH 2021-06-06

17:00:00

OM 2022-01-26
11:31:00 GRS 2021-10-26

15:15:00 BNB 2021-08-29
12:54:00 POA 2021-06-06

10:49:00

SNM 2022-01-26
11:12:00 SC 2021-10-26

10:46:00 KEEP 2021-08-27
19:27:00 ELF 2021-06-06

08:48:00

OG 2022-01-26
11:03:00 VIB 2021-10-24

19:15:00 GXS 2021-08-27
16:00:00 MTL 2021-06-04

17:59:00

QLC 2022-01-26
10:41:00 EVX 2021-10-24

17:00:00 QSP 2021-08-27
15:50:00 ENJ 2021-06-03

12:55:00

PIVX 2022-01-24
18:59:00 IDEX 2021-10-24

14:47:00 BLZ 2021-08-24
06:38:00 REEF 2021-06-03

05:04:00

PIVX 2022-01-18
16:00:00 FOR 2021-10-24

14:00:00 TCT 2021-08-24
00:51:00 EOS 2021-06-01

15:21:00

ELF 2022-01-17
17:46:00 VIB 2021-10-24

09:05:00 SRM 2021-08-22
20:31:00

We obtained historical transaction data of the identified pumped coins through the
CryptoCurrency eXchange Trading Library (CCXT).2 The CCXT library is used to connect
and trade with cryptocurrency exchanges and payment processing services worldwide,
providing a large set of transaction data. The available data includes the timestamp, date-
time, price, amount, volume expressed in BTC, and order type (buy or sell). Even though
several types of orders are possible, such as market orders, limit orders, limit sell orders,
and limit buy orders, we only collected basic order information (buy or sell) due to the
limitations of the CCXT Library. A small example of the obtained raw data is reported in
Table 3. In line with previous studies La Morgia et al. (2020, 2023), we analyzed a limited
dataset consisting of only three days of data surrounding the fraudulent event, including
the day of the fraud, the day before, and the day after. This approach assumes the absence
of any other fraud in the dataset during this period.

Table 3. An example of coin (raw) data.

Symbol Timestamp Datetime Side Price Amount btc_VOLUME

ADX/BTC 1663602963725 2022-09-19T15:56:03.725Z sell 8.23 × 10−6 694 0.00571162
ADX/BTC 1663602965541 2022-09-19T15:56:05.541Z sell 8.23 × 10−6 192 0.00158016
ADX/BTC 1663602970102 2022-09-19T15:56:10.102Z sell 8.23 × 10−6 705 0.00580215
ADX/BTC 1663602978208 2022-09-19T15:56:18.208Z buy 8.24 × 10−6 415 0.0034196
ADX/BTC 1663603016649 2022-09-19T15:56:56.649Z buy 8.25 × 10−6 2910 0.0240075
ADX/BTC 1663603028493 2022-09-19T15:57:08.493Z buy 8.26 × 10−6 2928 0.02418528
ADX/BTC 1663603029672 2022-09-19T15:57:09.672Z sell 8.26 × 10−6 457 0.00377482
ADX/BTC 1663603037503 2022-09-19T15:57:17.503Z buy 8.27 × 10−6 1276 0.01055252

. .

Understanding how to detect pump-and-dump schemes requires a basic knowledge
of cryptocurrency trading. Pending orders for a cryptocurrency are listed in the order
book, which is a double sorted list of sell (ask) and buy (bid) orders. The orders are sorted

Econometrics 2023, 11, 22 11 of 73

by price, with the lowest ask price listed first, and the highest bid price listed first. To
execute a buy order quickly, traders can use a buy market order, which fills all pending
asks in the order book until the requested amount of currency is traded. However, the
difference between the first and last ask prices can be high, particularly in markets with
low liquidity, leading to an unpredictably high total order cost. A more prudent investor
would use limit buy orders, which specify the maximum price at which to buy a security.
Although buy market orders are not frequently used in everyday transactions, members of
pump-and-dump groups use them when fast execution is necessary. Unfortunately, the
CCXT Library (and the Binance APIs) do not provide information about the type of order
placed by the buyer (e.g., market, limit, or stop loss), requiring us to infer this information in
a different way. La Morgia et al. (2020, 2023) used the fact that market orders are completed
instantly, and they aggregated all trades filled at the exact millisecond as a single market
order. They referred to these orders as rush orders. La Morgia et al. (2020, 2023) argued
that this approach provided a good indication of the abrupt rise in market orders, and we
followed the same methodology in our work.

As highlighted in Kamps and Kleinberg (2018) and La Morgia et al. (2020, 2023), the
trading volume, including both buy and sell orders, can be a good indicator of potential
pump-and-dump schemes. Coins selected by manipulators usually exhibit a weak trend,
with low volume and flat K-lines (a.k.a Japanese candlesticks) being their hallmarks. Ab-
normal volume may indicate that the market situation is about to change and signal that
manipulators are ready to pump the targeted coin.

We developed our classification models based on the approach of La Morgia et al.
(2020, 2023), which built upon the methodology proposed in Siris and Papagalou (2004) for
detecting Denial of Service attacks using an adaptive threshold. Specifically, we segmented
the data into chunks of s seconds and defined a moving window of size w hours. We
conducted various experiments with different feature sets and settings regarding the
window and chunk sizes. We chose a reasonably short chunk size to build a classifier
capable of detecting pump-and-dump schemes as soon as possible from the moment they
start. We considered chunk sizes of 30, 60, and 90 s and window sizes of 10, 30, and 60 min.

In our baseline scenario, we first flagged a pump-and-dump scheme (that is Yt = 1)
from the moment of the public announcement up to 60 s before it (or 120 s, in case of chunk
sizes of 90 s). This was done to acknowledge that the VIP members of the social media
groups who orchestrate these manipulations are presumed to receive insider information
seconds or minutes ahead of the general public. As such, our analysis accounts for the
possibility of information asymmetry and its potential impact on the identified market
manipulation. However, as previously discussed, our investigation has revealed that there
can be instances of unusual trading volumes occurring much earlier, specifically within
the 60-minute period preceding the public announcement, as shown in Figures A3–A46 in
Appendix D. These figures indicate that almost 50% of the examined pump-and-dumps
had significant abnormal trading volumes within one hour before the announcement (we
used the well-known 3-sigma rule to quickly identify potential outliers, but more robust
methods can be utilized; see Pukelsheim (1994), Rousseeuw and Leroy (2005), and Charu
(2019). These anomalous trades are most likely executed by the actual organizers of the
pump-and-dump scheme, who are presumably the sole beneficiaries of these manipulations.
Therefore, we broadened the identification of a pump-and-dump scheme from the time of
the public announcement to the 60-minute period prior to it, instead of only considering
the 1 or 2 min immediately before the announcement. This straightforward solution has
the potential to address both insider trading of the targeted crypto-assets and the issue of
imbalanced datasets.

The regressors employed in our analysis included:

• StdRushOrders and AvgRushOrders: the moving standard deviation and the average of
the volume of rush orders in each chunk of the moving window.

• StdTrades: the moving standard deviation of the number of trades.

Econometrics 2023, 11, 22 12 of 73

• StdVolumes and AvgVolumes: the moving standard deviation and the average of the
volume of trades in each chunk of the moving window.

• StdPrice and AvgPrice: the moving standard deviation and average of the closing price.
• HourSin, HourCos, MinuteCos, MinuteSin: the hour and minute of the first transaction

in each chunk. We used the sine and cosine functions to express their cyclical nature3.

We also tested the moving average of the maximum price in each chunk, as proposed
in La Morgia et al. (2020, 2023). However, it was almost perfectly collinear with the average
of the closing price and was not included in our analysis.

The number of data points corresponding to different combinations of chunk sizes
and window sizes, and the frequency of detection of pump-and-dump schemes (i.e., the
number of times where Yt = 1) in both levels and in %, when the pump-and-dump is
flagged from the moment of the public announcement up to 60/120 s and 60 min before
it, respectively, are reported in Table 4 . The ADF and KPSS unit root test statistics for the
average number of rush orders, average trade volumes, and average closing price, as well
as the p-values of the Jarque–Bera normality tests, are presented in Table 5.

Table 4. The number of data points corresponding to different combinations of chunk sizes and
window sizes, and the frequency of detection of pump-and-dump schemes (P&D) in both levels and
in %, when the pump-and-dump is flagged from the moment of the public announcement up to
60/120 s and 60 min before it, respectively.

Chunk Size/. . .
. . . /Window Size N. of Data

N. of Times Yt = 1
(%) P&D Flagged 1

or 2 Min before
Announcement

N. of Times Yt = 1
(%) P&D Flagged

60 Min before
Announcement

30 s./10 m. 441,130 518 (0.12%) 11,534 (2.61%)
30 s./30 m. 457,804 535 (0.12%) 11,900 (2.60%)
30 s./60 m. 460,033 537 (0.12%) 11,938 (2.60%)
60 s./10 m. 320,178 503 (0.15%) 8378 (2.62%)
60 s./30 m. 337,519 532 (0.16%) 8777 (2.60%)
60 s./60 m. 339,782 537 (0.16%) 8818 (2.60%)
90 s./10 m. 258,095 455 (0.18%) 6659 (2.58%)
90 s./30 m. 274,723 484 (0.18%) 7035 (2.56%)
90 s./60 m. 277,034 488 (0.18%) 7076 (2.55%)

Table 5. ADF and KPSS tests, and p-values of the Jarque–Bera normality tests for different combina-
tions of chunk sizes and window sizes. ** The null hypothesis is rejected at the 1% probability level;
* The null hypothesis is rejected at the 5% probability level (H0,ADF: unit root, H0,KPSS: stationarity).

Chunk Size/. . .
. . . /Window Size

AvgRushOrders
ADF/KPSS

AvgPrice
ADF/KPSS

AvgVolumes
ADF/KPSS

AvgRushOrders
JB (p-Value)

AvgPrice
JB (p-Value)

AvgVolumes
JB (p-Value)

30 s./10 m. −60.28 **/0.66 * −6.27 **/1.40 ** −40.28 **/0.76 ** 0.00 0.00 0.00
30 s./30 m. −45.86 **/0.57 * −6.38 **/1.37 ** −36.87 **/0.69 ** 0.00 0.00 0.00
30 s./60 m. −40.25 **/0.51 * −6.40 **/1.37 ** −32.49 **/0.68 ** 0.00 0.00 0.00
60 s./10 m. −56.26 **/0.41 −7.48 **/0.88 ** −35.60 **/0.45 0.00 0.00 0.00
60 s./30 m. −39.42 **/0.35 −7.67 **/0.88 ** −30.69 **/0.42 0.00 0.00 0.00
60 s./60 m. −36.91 **/0.32 −7.70 **/0.88 ** −29.58 **/0.41 0.00 0.00 0.00
90 s./10 m. −51.46 **/0.31 −8.21 **/0.70 * −33.82 **/0.35 0.00 0.00 0.00
90 s./30 m. −37.26 **/0.27 −8.45 **/0.65 * −28.71 **/0.32 0.00 0.00 0.00
90 s./60 m. −32.93 **/0.24 −8.49 **/0.68 * −25.69 **/0.31 0.00 0.00 0.00

All the regressors used in our analysis, except MinuteCos and MinuteSin, which are
too dense to be visible in a plot, for a chunk size of 60 s and a window size of 60 min are
illustrated in Figure A1 in Appendix B. The plots for the other combinations of chunk sizes
and window sizes are available from the authors upon request.

Econometrics 2023, 11, 22 13 of 73

Table 4 indicates that the occurrence of Yt = 1, signifying a pump-and-dump event,
is very rare (less than 0.2% of all instances) if the pump-and-dump is flagged 1 or 2 min
before the public announcement. The situation can be improved if we identify pump-and-
dump schemes during the time between the public announcement and the 60-min period
preceding it, which represents approximately 2.6% of all instances. As a result, detecting
a pump-and-dump poses a considerable challenge. Moreover, while the regressors are
generally stationary, their distribution strongly deviates from normality; see Table 5.4 In
this regard, to evaluate the robustness of our analysis, we will also examine in Section 5
the potential utility of a generalized Box–Cox transformation that accounts for zero values,
which may potentially improve the accuracy of classification.

4.2. Empirical Analysis

As previously discussed, we used various types of regressors in conjunction with three
distinct classifiers (Logistic Regression, Random Forest, and the AdaBoost classifier) to
identify the onset of a pump-and-dump scheme. Due to the limited number of pump-and-
dump instances in our dataset, we did not partition the data into standard training and
testing sets. Instead, we employed a 5-fold cross-validation method to obtain a more reliable
performance evaluation (see also La Morgia et al. (2020, 2023) for similar approaches). For
the random forest classifier, we employed a forest of 200 trees, with a maximum depth of 5
for each tree. For the AdaBoost classifier, we used 10 weak classifiers.

For the sake of space and interest, given the very large dataset at our disposal, we
focused exclusively on the 5-fold cross-validation, whereas a small summary of the in-
sample analysis can be found in the Appendix C.

Due to the large class imbalance in our dataset, we employed the resampling methods
discussed in Section 3.1 to address this issue and we artificially balanced the dataset during
model training. Resampling techniques used to create synthetic balanced datasets are also
commonly referred to as “subsampling” techniques. The detailed implementation in R
with the caret package can be found at https://topepo.github.io/caret/subsampling-for-
class-imbalances.html, accessed on 1 December 2022. For our 5-fold cross-validation, we
considered ten possible data configurations as follows:

1 Model training using the original dataset with pump-and-dumps flagged 1 or 2 min
before the public announcement;

2–5 Model training using synthetic balanced data created with Random Under-Sampling
(RUS), Random Over-Sampling (ROS), Synthetic Minority Over-sampling Technique
(SMOTE), and the Random Over-Sampling Examples (ROSE) method, respectively,
with pump-and-dumps flagged 1 or 2 min before the public announcement.

6 Model training using the original dataset with pump-and-dumps flagged 60 min
before the public announcement;

7–10 Model training using synthetic balanced data created with Random Under-Sampling
(RUS), Random Over-Sampling (ROS), Synthetic Minority Over-sampling Technique
(SMOTE), and the Random Over-Sampling Examples (ROSE) method, respectively,
with pump-and-dumps flagged 60 min before the public announcement.

The above-mentioned procedures were employed to train our three classifiers and
evaluate their performances in detecting pump-and-dump schemes with crypto-assets. The
following performance metrics were then used to evaluate the three competing classifiers:

• Area under the Receiver Operating Characteristic (ROC) curve (AUC): it is a metric that
measures the ability of a binary classification model to distinguish between positive
and negative classes. It is calculated as the area under the receiver operating charac-
teristic (ROC) curve, which plots the true positive rate against the false positive rate
at various classification thresholds. AUC is commonly used to evaluate the overall
performance of a classification model, and it ranges from 0 to 1, with a higher score in-
dicating better performance; see Sammut and Webb (2011), pp. 869–75, and references
therein for more details.

https://topepo.github.io/caret/subsampling-for-class-imbalances.html
https://topepo.github.io/caret/subsampling-for-class-imbalances.html

Econometrics 2023, 11, 22 14 of 73

• H-measure: the AUC has some well-known drawbacks, such as potentially providing
misleading results when ROC curves cross. However, a more serious deficiency of
the AUC (recognized only recently by Hand (2009) is that it is fundamentally incoher-
ent in terms of misclassification costs, as it employs different misclassification cost
distributions for different classifiers. This is problematic because the severity of mis-
classification for different points is a property of the problem rather than the classifiers
that have been selected. The H-measure, proposed by Hand (2009) and Hand and
Anagnostopoulos (2022), is a measure of classification performance that addresses
the incoherence of AUC by introducing costs for different types of misclassification.
However, it is common for the precise values of costs to be unknown at the time of
classifier evaluation. To address this, they proposed taking the expectation over a dis-
tribution of likely cost values. While researchers should choose this distribution based
on their knowledge of the problem, Hand (2009) and Hand and Anagnostopoulos
(2022) also recommended a standard default distribution, such as beta distribution,
for conventional measures, and they also generalized this approach to cover cases
when class sizes are unknown. Moreover, in many problems, class sizes are extremely
unbalanced (as in our case with pump-and-dumps), and it is rare to want to treat the
two classes symmetrically. To address this issue, the H-measure requires a Severity
Ratio (SR) that represents how much more severe misclassifying a class 0 instance
is than misclassifying a class 1 instance. The severity ratio is formally defined as
SR = c0/c1, where c0 > 0 is the cost of misclassifying a class 0 datapoint as class 1.
It is sometimes more convenient to consider the normalized cost c = c0/(c0 + c1), so
that SR = c/(1− c), where c is in the range [0,1]. By default, the severity ratio is set to
the reciprocal of the relative class frequency, i.e., SR = π̂1/π̂0, so that misclassifying
the rare class is considered a graver mistake. For more detailed motivation of this
default value, see Hand and Anagnostopoulos (2014).

• Accuracy: it is a measure of the correct classification rate, which is the ratio of the
number of correct predictions to the total number of predictions made. It is a widely
used performance metric for binary classification, but it can be misleading in cases of
imbalanced datasets.

• Sensitivity: it measures the proportion of true positive predictions out of all the actual
positive cases in the dataset. In other words, it measures how well the model identifies
the positive cases correctly (in our case, the number of pump-and-dumps).

• Specificity: it measures the proportion of true negative predictions out of all the actual
negative cases in the dataset. In other words, it measures how well the model identifies
the negative cases correctly.

The first two metrics are threshold-independent and do not depend on the specific
choice of the threshold used to determine the final assigned class, whereas the last three
metrics do depend on the choice of the threshold. In the latter case, we considered the
following possible values:

• p = 50%: this is the classical level used in many applications in various fields;
• p = 0.18%: this level is close to the empirical frequency of pump-and-dumps in the

dataset where they are flagged 1 or 2 min before the public announcement (that is,
close to the so-called observed prevalence5, π̂1,1 or 2min.);

• p = 2.6%: this level is close to the empirical frequency of pump-and-dumps in the
dataset where they are flagged 60 min before the public announcement (π̂1,60min.).

We chose thresholds close to the observed prevalence because this is often the optimal
choice for datasets with very low prevalence; see Freeman and Moisen (2008) and references
therein for more details. We would like to emphasize that there are several methods avail-
able to select the optimal threshold, and the choice of the threshold ultimately depends on
the cost function employed by the model user. Two large reviews with detailed applications
in R software can be found in López-Ratón et al. (2014) and Thiele and Hirschfeld (2021).

Econometrics 2023, 11, 22 15 of 73

The performance metrics of the 5-fold cross-validation for the ten possible data config-
urations, three classifiers, and for different chunk sizes and window sizes are reported in
Tables 6–11.

Table 6. Performance metrics of 5-fold cross-validation. Original data with pump-and-dumps flagged
1 or 2 min before the public announcement.

(1) ORIGINAL DATA (P&Ds Flagged 1 or 2 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 0.18%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.52 0.04 1.00 0.01 1.00 1.00 0.05 1.00
Logit 0.73 0.16 1.00 0.01 1.00 0.76 0.53 0.76

Random Forest 0.82 0.55 1.00 0.07 1.00 0.97 0.65 0.97
30 s./30 m. Ada. 0.52 0.03 1.00 0.01 1.00 1.00 0.04 1.00

Logit 0.73 0.16 1.00 0.00 1.00 0.75 0.53 0.75
Random Forest 0.81 0.53 1.00 0.08 1.00 0.97 0.63 0.97

30 s./60 m. Ada. 0.51 0.02 1.00 0.00 1.00 1.00 0.03 1.00
Logit 0.73 0.16 1.00 0.00 1.00 0.75 0.54 0.75

Random Forest 0.84 0.60 1.00 0.07 1.00 0.97 0.69 0.97
60 s./10 m. Ada. 0.53 0.05 1.00 0.04 1.00 1.00 0.06 1.00

Logit 0.72 0.16 1.00 0.02 1.00 0.64 0.72 0.64
Random Forest 0.75 0.39 1.00 0.09 1.00 0.95 0.53 0.95

60 s./30 m. Ada. 0.53 0.04 1.00 0.03 1.00 1.00 0.05 1.00
Logit 0.72 0.16 1.00 0.01 1.00 0.64 0.73 0.64

Random Forest 0.74 0.38 1.00 0.11 1.00 0.95 0.51 0.95
60 s./60 m. Ada. 0.51 0.02 1.00 0.00 1.00 1.00 0.02 1.00

Logit 0.72 0.15 1.00 0.01 1.00 0.64 0.73 0.64
Random Forest 0.77 0.43 1.00 0.07 1.00 0.95 0.57 0.95

90 s./10 m. Ada. 0.53 0.05 1.00 0.05 1.00 1.00 0.06 1.00
Logit 0.73 0.18 1.00 0.03 1.00 0.61 0.77 0.61

Random Forest 0.71 0.30 1.00 0.10 1.00 0.94 0.46 0.94
90 s./30 m. Ada. 0.53 0.05 1.00 0.04 1.00 1.00 0.06 1.00

Logit 0.73 0.17 1.00 0.01 1.00 0.61 0.77 0.61
Random Forest 0.72 0.34 1.00 0.09 1.00 0.94 0.49 0.94

90 s./60 m. Ada. 0.52 0.04 1.00 0.02 1.00 1.00 0.05 1.00
Logit 0.73 0.17 1.00 0.01 1.00 0.62 0.77 0.62

Random Forest 0.75 0.39 1.00 0.07 1.00 0.95 0.53 0.95

Table 7. Performance metrics of 5-fold cross-validation. Balanced data created with Random Under-
Sampling (RUS) and Random Over-Sampling (ROS), with pump-and-dumps flagged 1 or 2 min
before the public announcement.

RANDOM UNDER-SAMPLING (P&Ds Flagged 1 or 2 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 0.18%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.74 0.16 0.61 0.75 0.61 0.31 0.94 0.31
Logit 0.74 0.17 0.60 0.76 0.60 0.00 1.00 0.00

Random Forest 0.87 0.45 0.76 0.80 0.76 0.00 1.00 0.00
30 s./30 m. Ada. 0.74 0.15 0.56 0.81 0.56 0.29 0.95 0.29

Logit 0.72 0.15 0.60 0.77 0.60 0.00 1.00 0.00
Random Forest 0.87 0.45 0.75 0.81 0.75 0.00 1.00 0.00

30 s./60 m. Ada. 0.74 0.15 0.54 0.84 0.54 0.26 0.96 0.26
Logit 0.73 0.15 0.60 0.78 0.60 0.00 1.00 0.00

Random Forest 0.89 0.52 0.74 0.85 0.74 0.00 1.00 0.00
60 s./10 m. Ada. 0.76 0.18 0.65 0.75 0.65 0.28 0.96 0.28

Logit 0.73 0.17 0.60 0.76 0.60 0.00 1.00 0.00
Random Forest 0.84 0.36 0.73 0.77 0.73 0.00 1.00 0.00

60 s./30 m. Ada. 0.73 0.14 0.59 0.77 0.59 0.27 0.95 0.26
Logit 0.73 0.15 0.59 0.77 0.59 0.00 1.00 0.00

Random Forest 0.82 0.33 0.71 0.78 0.71 0.00 1.00 0.00
60 s./60 m. Ada. 0.73 0.14 0.54 0.82 0.54 0.25 0.95 0.25

Logit 0.72 0.14 0.60 0.76 0.60 0.00 1.00 0.00
Random Forest 0.83 0.33 0.71 0.77 0.71 0.00 1.00 0.00

90 s./10 m. Ada. 0.77 0.21 0.70 0.69 0.70 0.25 0.97 0.25
Logit 0.74 0.18 0.62 0.75 0.62 0.00 1.00 0.00

Random Forest 0.82 0.34 0.73 0.76 0.73 0.00 1.00 0.00
90 s./30 m. Ada. 0.75 0.17 0.63 0.76 0.63 0.30 0.95 0.30

Logit 0.73 0.16 0.60 0.76 0.60 0.00 1.00 0.00
Random Forest 0.81 0.31 0.72 0.74 0.72 0.00 1.00 0.00

90 s./60 m. Ada. 0.74 0.16 0.61 0.76 0.61 0.24 0.97 0.24
Logit 0.73 0.16 0.61 0.77 0.61 0.00 1.00 0.00

Random Forest 0.81 0.31 0.71 0.73 0.71 0.00 1.00 0.00

Econometrics 2023, 11, 22 16 of 73

Table 7. Cont.

RANDOM OVER-SAMPLING (P&Ds Flagged 1 or 2 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 0.18%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.68 0.10 0.56 0.77 0.56 0.53 0.80 0.53
Logit 0.74 0.17 0.60 0.76 0.60 0.00 1.00 0.00

Random Forest 0.83 0.52 1.00 0.18 1.00 0.92 0.69 0.92
30 s./30 m. Ada. 0.65 0.07 0.63 0.66 0.63 0.60 0.70 0.60

Logit 0.73 0.15 0.60 0.78 0.60 0.00 1.00 0.00
Random Forest 0.82 0.53 1.00 0.19 1.00 0.93 0.68 0.93

30 s./60 m. Ada. 0.67 0.09 0.53 0.80 0.53 0.52 0.80 0.52
Logit 0.73 0.15 0.60 0.78 0.60 0.00 1.00 0.00

Random Forest 0.83 0.56 1.00 0.18 1.00 0.92 0.69 0.92
60 s./10 m. Ada. 0.71 0.15 0.62 0.80 0.62 0.62 0.81 0.62

Logit 0.73 0.17 0.60 0.75 0.60 0.00 1.00 0.00
Random Forest 0.76 0.37 1.00 0.13 1.00 0.89 0.59 0.89

60 s./30 m. Ada. 0.67 0.09 0.58 0.75 0.58 0.57 0.77 0.57
Logit 0.72 0.15 0.60 0.76 0.60 0.00 1.00 0.00

Random Forest 0.75 0.38 1.00 0.11 1.00 0.91 0.56 0.91
60 s./60 m. Ada. 0.66 0.08 0.57 0.74 0.57 0.54 0.77 0.54

Logit 0.72 0.15 0.60 0.77 0.60 0.00 1.00 0.00
Random Forest 0.77 0.43 1.00 0.09 1.00 0.93 0.58 0.93

90 s./10 m. Ada. 0.71 0.14 0.67 0.71 0.67 0.59 0.80 0.59
Logit 0.74 0.19 0.61 0.77 0.61 0.00 1.00 0.00

Random Forest 0.72 0.29 1.00 0.13 1.00 0.88 0.52 0.88
90 s./30 m. Ada. 0.70 0.13 0.66 0.71 0.66 0.64 0.74 0.64

Logit 0.74 0.17 0.60 0.79 0.60 0.00 1.00 0.00
Random Forest 0.72 0.33 1.00 0.11 1.00 0.92 0.50 0.92

90 s./60 m. Ada. 0.69 0.11 0.59 0.77 0.59 0.57 0.78 0.57
Logit 0.73 0.16 0.60 0.79 0.60 0.00 1.00 0.00

Random Forest 0.74 0.37 1.00 0.10 1.00 0.92 0.54 0.93

Table 6 reports the results for the original dataset with pump-and-dumps flagged 1 or 2
min before the public announcement, and it clearly demonstrates the impact of using classi-
fiers with a heavily imbalanced dataset and a traditional threshold of p = 50% on accuracy
and sensitivity. The results show that accuracy is almost perfect, but sensitivity is close
to zero, indicating an inability to detect any pump-and-dumps. However, by setting the
threshold close to the observed prevalence (p = 0.2%), the results significantly improved,
with sensitivity exceeding 50% for both the random forest and logit models. AdaBoost,
on the other hand, continued to struggle. If we use threshold-independent measures, the
random forest model performs the best, while AdaBoost is the worst. Regarding chunk
sizes and window sizes, the best results seem to be obtained with a chunk size of 30 s and
a window size of 60 min, consistent with the findings reported in La Morgia et al. (2020,
2023).

When considering the original dataset with pump-and-dumps flagged 60 min before
the public announcement (Table 9), the performance of both random forest and logit models
improved significantly, with the random forest showing an AUC, H-measure, accuracy,
sensitivity, and specificity remarkably close to 1 for almost all chunk sizes and window
sizes. These metrics are the best across all 10 data configurations considered in this study.
AdaBoost remained the worst model, although its metrics improved as well.

If we consider resampling methods to build synthetic balanced datasets with pump-
and-dumps flagged 1 or 2 min before the announcement (Tables 7 and 8), we can observe
improvements in threshold-dependent metrics with p = 50%, while there are no significant
differences in threshold-dependent metrics with p = 0.18% and threshold-independent
metrics compared to the baseline case. However, particularly in the case of random
forests together with Random Under-Sampling and ROSE methods, the results can be
much worse. On the other hand, the AdaBoost classifier seems to benefit the most from
resampling methods.

Econometrics 2023, 11, 22 17 of 73

Table 8. Performance metrics of 5-fold cross-validation. Balanced data created with the Synthetic
Minority Over-sampling Technique (SMOTE) and the Random Over-Sampling Examples (ROSE)
method, with pump-and-dumps flagged 1 or 2 min before the public announcement.

Synthetic Minority Over-sampling Technique (SMOTE)-(P&Ds Flagged 1 or 2 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 0.18%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.69 0.12 0.60 0.78 0.60 0.60 0.78 0.60
Logit 0.74 0.17 0.61 0.75 0.61 0.00 1.00 0.00

Random Forest 0.83 0.50 1.00 0.24 1.00 0.83 0.74 0.83
30 s./30 m. Ada. 0.67 0.09 0.61 0.73 0.60 0.60 0.73 0.60

Logit 0.73 0.15 0.61 0.77 0.61 0.00 1.00 0.00
Random Forest 0.83 0.54 1.00 0.27 1.00 0.87 0.72 0.87

30 s./60 m. Ada. 0.68 0.11 0.61 0.75 0.61 0.56 0.78 0.55
Logit 0.73 0.15 0.61 0.77 0.61 0.00 1.00 0.00

Random Forest 0.85 0.58 1.00 0.24 1.00 0.89 0.75 0.89
60 s./10 m. Ada. 0.67 0.11 0.74 0.57 0.74 0.72 0.61 0.72

Logit 0.73 0.17 0.61 0.75 0.61 0.00 1.00 0.00
Random Forest 0.78 0.36 1.00 0.14 1.00 0.78 0.68 0.78

60 s./30 m. Ada. 0.66 0.10 0.76 0.56 0.76 0.76 0.56 0.76
Logit 0.72 0.15 0.61 0.76 0.61 0.00 1.00 0.00

Random Forest 0.79 0.40 1.00 0.14 1.00 0.82 0.69 0.82
60 s./60 m. Ada. 0.66 0.09 0.66 0.65 0.66 0.66 0.65 0.66

Logit 0.72 0.15 0.60 0.77 0.60 0.00 1.00 0.00
Random Forest 0.79 0.42 1.00 0.12 1.00 0.85 0.67 0.85

90 s./10 m. Ada. 0.69 0.13 0.71 0.64 0.71 0.69 0.67 0.69
Logit 0.74 0.18 0.62 0.76 0.62 0.00 1.00 0.00

Random Forest 0.74 0.30 1.00 0.13 1.00 0.79 0.62 0.79
90 s./30 m. Ada. 0.67 0.12 0.74 0.59 0.74 0.72 0.62 0.72

Logit 0.74 0.17 0.61 0.79 0.61 0.00 1.00 0.00
Random Forest 0.76 0.34 1.00 0.14 1.00 0.82 0.63 0.82

90 s./60 m. Ada. 0.67 0.11 0.71 0.62 0.71 0.71 0.62 0.71
Logit 0.74 0.17 0.61 0.79 0.61 0.00 1.00 0.00

Random Forest 0.76 0.37 1.00 0.11 1.00 0.86 0.60 0.86

Random Over-Sampling Examples (ROSE)-(P&Ds Flagged 1 or 2 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 0.18%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.54 0.06 0.98 0.10 0.99 0.98 0.10 0.98
Logit 0.74 0.17 0.60 0.77 0.59 0.00 1.00 0.00

Random Forest 0.55 0.07 1.00 0.08 1.00 0.96 0.14 0.96
30 s./30 m. Ada. 0.53 0.04 0.98 0.08 0.98 0.98 0.09 0.98

Logit 0.73 0.15 0.59 0.78 0.59 0.00 1.00 0.00
Random Forest 0.55 0.06 1.00 0.07 1.00 0.92 0.17 0.92

30 s./60 m. Ada. 0.53 0.02 0.97 0.08 0.97 0.97 0.08 0.97
Logit 0.73 0.15 0.59 0.78 0.59 0.00 1.00 0.00

Random Forest 0.57 0.06 1.00 0.07 1.00 0.83 0.30 0.83
60 s./10 m. Ada. 0.54 0.06 0.99 0.09 0.99 0.99 0.10 0.99

Logit 0.73 0.16 0.59 0.77 0.59 0.00 1.00 0.00
Random Forest 0.55 0.07 1.00 0.08 1.00 0.97 0.12 0.97

60 s./30 m. Ada. 0.54 0.05 0.99 0.09 0.99 0.98 0.09 0.99
Logit 0.72 0.14 0.59 0.77 0.59 0.00 1.00 0.00

Random Forest 0.54 0.06 1.00 0.07 1.00 0.95 0.12 0.95
60 s./60 m. Ada. 0.53 0.03 0.98 0.07 0.98 0.98 0.07 0.98

Logit 0.72 0.14 0.59 0.78 0.59 0.00 1.00 0.00
Random Forest 0.52 0.05 1.00 0.07 1.00 0.92 0.12 0.92

90 s./10 m. Ada. 0.55 0.07 0.99 0.10 0.99 0.99 0.11 0.99
Logit 0.74 0.18 0.59 0.80 0.59 0.00 1.00 0.00

Random Forest 0.55 0.08 1.00 0.09 1.00 0.97 0.12 0.98
90 s./30 m. Ada. 0.54 0.05 0.99 0.08 0.99 0.98 0.09 0.99

Logit 0.73 0.16 0.59 0.79 0.59 0.00 1.00 0.00
Random Forest 0.54 0.06 1.00 0.07 1.00 0.96 0.11 0.96

90 s./60 m. Ada. 0.53 0.04 0.98 0.08 0.99 0.98 0.08 0.98
Logit 0.73 0.16 0.59 0.80 0.59 0.00 1.00 0.00

Random Forest 0.53 0.05 1.00 0.07 1.00 0.94 0.12 0.94

If we consider resampling methods to build synthetic balanced datasets with pump-
and-dumps flagged 60 min before the announcement (Tables 10 and 11), the results are
generally better than the case with pump-and-dumps flagged 1 or 2 min before the an-
nouncement, with the exception of the ROSE method, which continues to show rather poor
results. However, there are again no qualitative differences with the baseline case without
resampling methods, which is worse only if threshold-dependent metrics with p = 50%
are considered.

Econometrics 2023, 11, 22 18 of 73

Table 9. Performance metrics of 5-fold cross-validation. Original data with pump-and-dumps flagged
60 min before the public announcement.

(6) ORIGINAL DATA (P&Ds Flagged 60 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 2.6%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.51 0.01 0.97 0.01 1.00 0.97 0.01 1.00
Logit 0.71 0.13 0.97 0.00 1.00 0.58 0.77 0.57

Random Forest 0.98 0.83 0.99 0.44 1.00 0.87 0.96 0.87
30 s./30 m. Ada. 0.51 0.01 0.97 0.00 1.00 0.97 0.01 1.00

Logit 0.71 0.14 0.97 0.00 1.00 0.58 0.78 0.58
Random Forest 0.99 0.91 0.99 0.63 1.00 0.91 0.98 0.91

30 s./60 m. Ada. 0.50 0.01 0.97 0.00 1.00 0.97 0.01 1.00
Logit 0.72 0.14 0.97 0.00 1.00 0.59 0.79 0.58

Random Forest 0.99 0.94 0.99 0.73 1.00 0.93 0.99 0.93
60 s./10 m. Ada. 0.50 0.01 0.97 0.00 1.00 0.97 0.01 1.00

Logit 0.71 0.13 0.97 0.00 1.00 0.58 0.78 0.58
Random Forest 0.96 0.75 0.98 0.27 1.00 0.83 0.94 0.83

60 s./30 m. Ada. 0.50 0.01 0.97 0.01 1.00 0.97 0.01 1.00
Logit 0.72 0.14 0.97 0.00 1.00 0.58 0.78 0.58

Random Forest 0.99 0.87 0.99 0.52 1.00 0.88 0.97 0.88
60 s./60 m. Ada. 0.50 0.01 0.97 0.00 1.00 0.97 0.01 1.00

Logit 0.72 0.14 0.97 0.00 1.00 0.59 0.80 0.58
Random Forest 0.99 0.91 0.99 0.62 1.00 0.90 0.98 0.90

90 s./10 m. Ada. 0.50 0.01 0.97 0.00 1.00 0.97 0.01 1.00
Logit 0.71 0.14 0.97 0.00 1.00 0.59 0.77 0.59

Random Forest 0.94 0.70 0.98 0.20 1.00 0.81 0.92 0.81
90 s./30 m. Ada. 0.50 0.01 0.97 0.00 1.00 0.97 0.01 1.00

Logit 0.72 0.14 0.97 0.00 1.00 0.60 0.78 0.59
Random Forest 0.97 0.82 0.98 0.39 1.00 0.86 0.95 0.85

90 s./60 m. Ada. 0.50 0.01 0.97 0.00 1.00 0.97 0.01 1.00
Logit 0.72 0.15 0.97 0.00 1.00 0.60 0.79 0.59

Random Forest 0.99 0.89 0.99 0.54 1.00 0.89 0.98 0.89

The main result that emerges from this analysis is that the most effective approach to
detecting pumps-and-dumps is by using the random forest model with a small chunk size
(maximum of 30 s) and a window size of at least one hour, while setting the threshold close
to the observed prevalence in the dataset for pump-and-dumps flagged 60 min before the
announcement. Although resampling methods may be useful in some cases, particularly
when using threshold-dependent metrics with p = 50%, threshold-independent measures
were not affected, and a better balance between sensitivity and specificity can be obtained
by simply choosing a proper probability threshold. Moreover, detecting pump-and-dumps
in real-time involves high-dimensional, high-frequency data, and the use of resampling
methods to build synthetic datasets could be time-consuming, making such methods less
practical. Additionally, implementing these methods for real-time detection would require
a significant investment in hardware, which may not be feasible for crypto-exchanges and
financial regulators due to the associated high financial costs.

Finally, we remark that our empirical analysis indirectly confirms the large-scale
Monte Carlo simulations and case study in the medical field recently reported by van den
Goorbergh et al. (2022), who showed that using Random Under-Sampling, Random Over-
Sampling, and SMOTE methods resulted in poorly calibrated models that did not provide
higher areas under the ROC curve compared to models developed without correction for
class imbalance. Furthermore, they also showed that a better balance between sensitivity
and specificity can be achieved by simply adjusting the probability threshold.

Econometrics 2023, 11, 22 19 of 73

Table 10. Performance metrics of 5-fold cross-validation. Balanced data created with Random Under-
Sampling (RUS) and Random Over-Sampling (ROS), with pump-and-dumps flagged 60 min before
the public announcement.

RANDOM UNDER-SAMPLING (P&Ds Flagged 60 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 2.6%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.70 0.13 0.73 0.61 0.73 0.57 0.78 0.56
Logit 0.70 0.13 0.58 0.77 0.58 0.03 1.00 0.00

Random Forest 0.96 0.70 0.85 0.92 0.85 0.11 1.00 0.09
30 s./30 m. Ada. 0.72 0.14 0.70 0.64 0.70 0.53 0.82 0.52

Logit 0.71 0.13 0.59 0.77 0.59 0.03 1.00 0.00
Random Forest 0.98 0.81 0.90 0.95 0.90 0.16 1.00 0.14

30 s./60 m. Ada. 0.72 0.15 0.70 0.65 0.70 0.54 0.83 0.54
Logit 0.71 0.14 0.60 0.77 0.60 0.03 1.00 0.00

Random Forest 0.99 0.86 0.93 0.96 0.93 0.21 1.00 0.19
60 s./10 m. Ada. 0.71 0.14 0.68 0.67 0.68 0.55 0.82 0.54

Logit 0.71 0.13 0.58 0.77 0.58 0.03 1.00 0.00
Random Forest 0.93 0.60 0.80 0.90 0.80 0.08 1.00 0.06

60 s./30 m. Ada. 0.73 0.15 0.59 0.79 0.58 0.46 0.89 0.45
Logit 0.71 0.14 0.59 0.77 0.59 0.03 1.00 0.00

Random Forest 0.97 0.75 0.87 0.94 0.87 0.11 1.00 0.08
60 s./60 m. Ada. 0.73 0.15 0.65 0.71 0.65 0.47 0.89 0.46

Logit 0.72 0.14 0.60 0.77 0.60 0.03 1.00 0.00
Random Forest 0.98 0.81 0.90 0.95 0.90 0.14 1.00 0.11

90 s./10 m. Ada. 0.73 0.15 0.58 0.79 0.57 0.49 0.88 0.48
Logit 0.71 0.13 0.59 0.78 0.58 0.03 1.00 0.00

Random Forest 0.91 0.53 0.77 0.88 0.77 0.07 1.00 0.05
90 s./30 m. Ada. 0.72 0.14 0.61 0.76 0.61 0.46 0.90 0.45

Logit 0.72 0.14 0.59 0.78 0.59 0.03 1.00 0.00
Random Forest 0.95 0.67 0.83 0.92 0.83 0.09 1.00 0.06

90 s./60 m. Ada. 0.72 0.14 0.61 0.76 0.61 0.50 0.88 0.49
Logit 0.72 0.14 0.61 0.78 0.60 0.03 1.00 0.00

Random Forest 0.97 0.76 0.87 0.94 0.87 0.11 1.00 0.09

RANDOM OVER-SAMPLING (P&Ds Flagged 60 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 2.6%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.67 0.12 0.75 0.58 0.75 0.75 0.59 0.75
Logit 0.71 0.13 0.58 0.77 0.58 0.03 1.00 0.00

Random Forest 0.98 0.79 0.99 0.65 1.00 0.61 0.99 0.60
30 s./30 m. Ada. 0.67 0.12 0.75 0.58 0.76 0.74 0.60 0.74

Logit 0.71 0.13 0.59 0.77 0.59 0.03 1.00 0.00
Random Forest 0.99 0.89 0.99 0.77 1.00 0.70 0.99 0.70

30 s./60 m. Ada. 0.69 0.14 0.74 0.60 0.74 0.70 0.64 0.70
Logit 0.72 0.14 0.60 0.77 0.60 0.03 1.00 0.00

Random Forest 0.99 0.93 1.00 0.83 1.00 0.78 1.00 0.78
60 s./10 m. Ada. 0.70 0.12 0.64 0.71 0.64 0.61 0.75 0.61

Logit 0.71 0.13 0.58 0.77 0.58 0.03 1.00 0.00
Random Forest 0.96 0.73 0.99 0.50 1.00 0.58 0.98 0.57

60 s./30 m. Ada. 0.70 0.12 0.54 0.84 0.53 0.52 0.85 0.51
Logit 0.71 0.14 0.59 0.77 0.59 0.03 1.00 0.00

Random Forest 0.98 0.87 0.99 0.69 1.00 0.72 0.99 0.72
60 s./60 m. Ada. 0.69 0.12 0.58 0.78 0.58 0.58 0.79 0.57

Logit 0.72 0.14 0.60 0.78 0.60 0.03 1.00 0.00
Random Forest 0.99 0.90 0.99 0.76 1.00 0.74 0.99 0.73

90 s./10 m. Ada. 0.69 0.11 0.58 0.79 0.57 0.57 0.80 0.56
Logit 0.71 0.13 0.59 0.78 0.58 0.03 1.00 0.00

Random Forest 0.95 0.67 0.98 0.39 1.00 0.56 0.98 0.55
90 s./30 m. Ada. 0.69 0.11 0.60 0.76 0.60 0.58 0.80 0.57

Logit 0.72 0.14 0.60 0.77 0.59 0.03 1.00 0.00
Random Forest 0.97 0.81 0.99 0.59 1.00 0.65 0.98 0.64

90 s./60 m. Ada. 0.70 0.12 0.56 0.82 0.56 0.55 0.84 0.54
Logit 0.72 0.14 0.61 0.78 0.60 0.03 1.00 0.00

Random Forest 0.98 0.88 0.99 0.71 1.00 0.73 0.99 0.72

Econometrics 2023, 11, 22 20 of 73

Table 11. Performance metrics of 5-fold cross-validation. Balanced data created with the Synthetic
Minority Over-sampling Technique (SMOTE) and the Random Over-Sampling Examples (ROSE)
method, with pump-and-dumps flagged 60 min before the public announcement.

Synthetic Minority Over-sampling Technique (SMOTE) (P&Ds Flagged 60 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 2.6%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.70 0.12 0.63 0.70 0.63 0.55 0.79 0.54
Logit 0.71 0.13 0.58 0.77 0.58 0.03 1.00 0.00

Random Forest 0.97 0.75 0.98 0.72 0.99 0.53 0.99 0.52
30 s./30 m. Ada. 0.68 0.12 0.75 0.58 0.76 0.71 0.62 0.71

Logit 0.71 0.13 0.59 0.77 0.59 0.03 1.00 0.00
Random Forest 0.99 0.86 0.99 0.82 1.00 0.62 0.99 0.61

30 s./60 m. Ada. 0.68 0.12 0.74 0.60 0.74 0.70 0.64 0.70
Logit 0.71 0.14 0.61 0.78 0.60 0.03 1.00 0.00

Random Forest 0.99 0.91 0.99 0.88 1.00 0.68 1.00 0.67
60 s./10 m. Ada. 0.67 0.12 0.76 0.57 0.76 0.76 0.57 0.76

Logit 0.71 0.13 0.58 0.77 0.58 0.03 1.00 0.00
Random Forest 0.94 0.64 0.97 0.58 0.98 0.47 0.98 0.46

60 s./30 m. Ada. 0.69 0.11 0.58 0.79 0.57 0.57 0.80 0.57
Logit 0.71 0.14 0.59 0.77 0.59 0.03 1.00 0.00

Random Forest 0.98 0.81 0.99 0.73 1.00 0.58 0.99 0.56
60 s./60 m. Ada. 0.69 0.13 0.68 0.68 0.68 0.62 0.73 0.62

Logit 0.72 0.14 0.61 0.78 0.60 0.03 1.00 0.00
Random Forest 0.99 0.86 0.99 0.81 1.00 0.61 1.00 0.60

90 s./10 m. Ada. 0.67 0.12 0.76 0.57 0.76 0.74 0.59 0.74
Logit 0.71 0.13 0.59 0.77 0.58 0.03 1.00 0.00

Random Forest 0.92 0.58 0.97 0.48 0.98 0.45 0.98 0.43
90 s./30 m. Ada. 0.68 0.12 0.66 0.68 0.66 0.63 0.72 0.63

Logit 0.72 0.14 0.60 0.77 0.59 0.03 1.00 0.00
Random Forest 0.96 0.74 0.98 0.65 0.99 0.51 0.99 0.50

90 s./60 m. Ada. 0.70 0.12 0.64 0.71 0.64 0.59 0.77 0.59
Logit 0.72 0.14 0.61 0.78 0.60 0.03 1.00 0.00

Random Forest 0.98 0.81 0.99 0.75 0.99 0.57 0.99 0.56

Random Over-Sampling Examples (ROSE) (P&Ds Flagged 60 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 2.6%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./10 m. Ada. 0.50 0.00 0.92 0.05 0.94 0.91 0.06 0.94
Logit 0.70 0.12 0.58 0.77 0.57 0.03 1.00 0.00

Random Forest 0.66 0.08 0.96 0.06 0.98 0.34 0.87 0.33
30 s./30 m. Ada. 0.50 0.00 0.94 0.05 0.96 0.93 0.05 0.96

Logit 0.71 0.13 0.59 0.77 0.58 0.03 1.00 0.00
Random Forest 0.73 0.14 0.86 0.30 0.88 0.13 0.99 0.10

30 s./60 m. Ada. 0.50 0.00 0.93 0.05 0.95 0.92 0.05 0.94
Logit 0.71 0.13 0.59 0.76 0.59 0.03 1.00 0.00

Random Forest 0.76 0.17 0.61 0.80 0.61 0.06 1.00 0.04
60 s./10 m. Ada. 0.50 0.00 0.94 0.04 0.97 0.93 0.04 0.95

Logit 0.71 0.13 0.58 0.78 0.58 0.03 1.00 0.00
Random Forest 0.55 0.02 0.97 0.03 0.99 0.76 0.33 0.77

60 s./30 m. Ada. 0.50 0.00 0.94 0.04 0.97 0.93 0.04 0.95
Logit 0.71 0.13 0.59 0.77 0.58 0.03 1.00 0.00

Random Forest 0.66 0.08 0.96 0.05 0.99 0.37 0.87 0.36
60 s./60 m. Ada. 0.50 0.00 0.93 0.04 0.95 0.93 0.04 0.95

Logit 0.71 0.14 0.59 0.77 0.59 0.03 1.00 0.00
Random Forest 0.73 0.14 0.91 0.19 0.93 0.16 0.98 0.13

90 s./10 m. Ada. 0.50 0.00 0.95 0.02 0.98 0.94 0.03 0.97
Logit 0.71 0.13 0.58 0.78 0.58 0.03 1.00 0.00

Random Forest 0.52 0.01 0.97 0.02 0.99 0.83 0.19 0.85
90 s./30 m. Ada. 0.50 0.00 0.94 0.04 0.96 0.93 0.04 0.96

Logit 0.71 0.14 0.59 0.78 0.59 0.03 1.00 0.00
Random Forest 0.62 0.05 0.97 0.03 0.99 0.54 0.68 0.54

90 s./60 m. Ada. 0.50 0.00 0.93 0.04 0.96 0.93 0.04 0.96
Logit 0.72 0.14 0.59 0.77 0.59 0.03 1.00 0.00

Random Forest 0.70 0.10 0.95 0.08 0.98 0.25 0.95 0.23

5. A Robustness Check: Transforming the Data Using a Generalized Box–Cox
Tranformation

Even though all the regressors are stationary, some of them exhibit a large variability.
Therefore, we investigated how our previous results would change by transforming the
data to stabilize their variance. To achieve this, we transformed all the regressors (except
for the four periodic functions of time) using the generalized version of the Box–Cox trans-
formation proposed by Hawkins and Weisberg (2017). This method allows the inclusion
of zeros and nonpositive values in the transformation. Their approach uses the original

Econometrics 2023, 11, 22 21 of 73

Box–Cox family of scaled power transformations, given by (wλ − 1)/λ for λ 6= 0 and
log(w) for λ = 0, on the following transformed data:

w = 0.5(y +
√

y2 + γ2)

where y is the original data and λ and γ are either user-selected parameters or are estimated;
see Hawkins and Weisberg (2017) for the full details on this transformation6.

The performance metric differences of the 5-fold cross-validation between the trans-
formed datasets and the original datasets, with pump-and-dumps flagged 1 or 2 min before
the public announcement, are reported in Table 12.

Table 12. Performance metric differences of the 5-fold cross-validation between the transformed
dataset and the original dataset with pump-and-dumps flagged 1 or 2 min before the public an-
nouncement.

(1) ORIGINAL DATA (P&Ds Flagged 1 or 2 min before Announcement)

Chunk/Window Threshold Independent Threshold Dependent (p = 50%) Threshold Dependent (p = 0.18%)
. . . /Model AUC H-Measure Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

30 s./ 10 m. Ada. 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
Logit −0.02 −0.03 0.00 0.01 0.00 −0.03 −0.02 -0.03

Random Forest 0.01 0.02 0.00 0.01 0.00 0.00 0.03 0.00
30 s./30 m. Ada. −0.01 −0.01 0.00 0.00 0.00 0.00 −0.01 0.00

Logit 0.00 0.00 0.00 0.00 0.00 −0.02 −0.03 −0.02
Random Forest 0.00 −0.01 0.00 0.00 0.00 0.00 −0.01 0.00

30 s./60 m. Ada. −0.01 −0.01 0.00 0.00 0.00 0.00 −0.01 0.00
Logit 0.00 0.00 0.00 0.00 0.00 0.00 −0.02 0.00

Random Forest 0.01 0.02 0.00 0.01 0.00 0.00 0.02 0.00
60 s./10 m. Ada. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Logit −0.03 −0.04 0.00 0.02 0.00 −0.07 0.06 −0.07
Random Forest 0.01 0.02 0.00 0.00 0.00 0.00 0.02 0.00

60 s./30 m. Ada. 0.00 0.00 0.00 −0.02 0.00 0.00 0.00 0.00
Logit −0.01 −0.01 0.00 0.01 0.00 −0.03 0.05 −0.03

Random Forest −0.01 −0.02 0.00 0.01 0.00 0.00 −0.01 0.00
60 s./60 m. Ada. 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00

Logit 0.00 0.00 0.00 0.01 0.00 −0.01 0.03 −0.01
Random Forest 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00

90 s./10 m. Ada. 0.00 −0.01 0.00 0.00 0.00 0.00 −0.01 0.00
Logit −0.03 −0.05 0.00 0.03 0.00 −0.07 0.06 −0.07

Random Forest 0.00 −0.01 0.00 0.01 0.00 0.00 −0.01 0.00
90 s./30 m. Ada. 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Logit −0.02 −0.02 0.00 0.01 0.00 −0.05 0.04 −0.05
Random Forest 0.02 0.03 0.00 0.00 0.00 0.00 0.04 0.00

90 s./60 m. Ada. 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Logit −0.01 −0.01 0.00 0.01 0.00 −0.02 0.03 −0.02

Random Forest 0.03 0.04 0.00 0.00 0.00 0.00 0.05 0.00

The differences are minimal and almost zero in all cases, indicating that using trans-
formed regressors does not improve the classification process. This is a positive result,
as computing the generalized Box–Cox transformation with high-dimensional and high-
frequency data can be computationally demanding. The performance metric differences in
the case of resampling methods used to build synthetic balanced data deliver qualitatively
similar results. Therefore, for the sake of interest and space, they are not reported here.

6. Discussion and Conclusions

Detecting pump-and-dump schemes in the cryptocurrency market using high-frequency
data is a daunting task due to the rarity of pump-and-dump cases in these datasets, which
typically account for less than 0.2% of all cases. Additionally, despite VIP members of
social media groups organizing these market manipulations, supposedly receiving detailed
information about them seconds or minutes before the general public, unusual trading
volumes can occur much earlier, which complicates the detection process. These challenges
significantly affect the performance of any machine learning classifier employed to identify
pump-and-dump activities, resulting in the difficulty of accurately detecting such instances
in a timely manner.

Econometrics 2023, 11, 22 22 of 73

To address the first problem, we proposed building synthetic balanced datasets gener-
ated according to four resampling methods for class imbalances proposed in the statistical
literature. To address the second problem, we suggested flagging a pump-and-dump
from the minute of the public announcement up to 60 min before it. This approach can
deal with the insiders’ anticipated purchases of targeted crypto-assets and the issue of
imbalanced datasets.

To verify the validity of our proposals, we collected data about pump-and-dump
schemes from Pumpolymp, which is a website that provides detailed information about
all Telegram groups dealing with crypto pump-and-dumps, and managed to extract 351
pump signals relative to the Binance crypto exchange that took place in 2021 and 2022. The
historical transaction level data of the identified pumped coins were obtained using the
CryptoCurrency eXchange Trading Library (CCXT). We used various types of regressors
in conjunction with three distinct classifiers (logistic regression, random forest, and the
AdaBoost classifier) to identify the onset of a pump-and-dump scheme.

Our empirical analysis showed that the most effective approach to detecting pump-
and-dumps was using the original imbalanced dataset with pump-and-dumps flagged
60 min in advance, together with a random forest model with data segmented into 30-s
chunks and regressors computed with a moving window of 1 h. We also found that a
better balance between sensitivity and specificity could be achieved by merely adjusting
the probability threshold, such as setting the threshold close to the observed prevalence
in the original dataset. Although resampling methods were useful in some cases, particu-
larly when using threshold-dependent metrics with a probability level equal to p = 50%,
threshold-independent measures were not affected, and in some cases they even pro-
vided worse AUC and H-measures compared to models developed without correction
for class imbalance. Thus, our empirical evidence confirmed the large-scale Monte Carlo
simulations performed by van den Goorbergh et al. (2022) who showed that using Ran-
dom Under-Sampling, Random Over-Sampling, and SMOTE methods resulted in poorly
calibrated models.

We highlight that detecting pump-and-dumps in real-time involves high-dimensional
data, and the use of resampling methods to build synthetic datasets could be time-consuming,
making such methods less practical. Implementing these methods for real-time detection
would require a significant investment in hardware, which may not be feasible for crypto-
exchanges and financial regulators due to the associated high financial costs.

Finally, we performed a set of robustness checks to verify that our results also held
when transforming the data to stabilize their variance using a generalized version of the
Box–Cox transformation to allow the inclusion of zeros and non-positive values. The
differences were minimal, indicating that using transformed regressors did not improve
the classification process.

We remark that we selected thresholds close to the observed prevalence because this
is often the optimal choice for datasets with very low prevalence. However, the optimal
threshold ultimately depends on the cost function employed by the model user. We leave a
detailed analysis of the methods to find the optimal threshold to detect pump-and-dumps
as an avenue for future research.

In the context of pump-and-dump scheme detection, it is important to acknowledge
the potential for incorrect identifications and the impact this can have on the application
of resampling methods to build synthetic balanced datasets. Our study assumes that all
pump-and-dump schemes have been accurately identified through a separate empirical
strategy. However, there is a possibility, if not likelihood, of noise or misclassifications
in this higher-level identification process. The presence of incorrect identifications in-
troduces a source of bias into the training sample used for model development. If the
identification process exhibits a significant Type 1 error (false positive rate), the utilization
of synthetic samples could potentially amplify this bias. This can be particularly prob-
lematic in cases of class imbalance, where the minority class (pump-and-dump schemes)
may not be properly identified, resulting in an underrepresentation of the true positive

Econometrics 2023, 11, 22 23 of 73

cases. It is crucial to address this issue in future research. Conducting experiments on
simulated data could provide valuable insights into the impact of misclassifications on the
effectiveness of resampling methods. By intentionally introducing noise or biases in the
identification process, researchers can examine how the use of synthetic samples exacer-
bates or mitigates these issues. Additionally, exploring alternative strategies for accurate
identification of pump-and-dump schemes and assessing their influence on resampling
techniques can contribute to the development of more robust and reliable models in the
detection of this financial fraud. The robust methods and the large simulation studies in
Bunkhumpornpat et al. (2009) and Barua et al. (2012) can provide valuable starting points.

Author Contributions: Conceptualization, D.F. and Y.X.; methodology, D.F. and Y.X.; software, D.F.
and Y.X.; validation, D.F. and Y.X.; formal analysis, D.F.; investigation, D.F. and Y.X.; resources, D.F.
and Y.X.; data curation, D.F. and Y.X.; writing—original draft preparation, D.F. and Y.X.; writing—
review and editing, D.F.; visualization, D.F. and Y.X.; supervision, D.F.; project administration, D.F.;
funding acquisition, D.F. All authors have read and agreed to the published version of the manuscript.

Funding: The first-named author gratefully acknowledges financial support from the grant of the
Russian Science Foundation, n. 20-68-47030.

Data Availability Statement: The data are available from the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The RUS method reduces the number of instances in the majority class by randomly
sampling from it until it matches the number of samples in the minority class. Suppose we
have a dataset of n observations with a binary outcome variable Y that takes values 0 or 1,
where Y = 1 denotes the event of interest. Let p be the proportion of observations with
Y = 1, so that p = n1/n, where n1 is the number of observations with Y = 1. Typically, p is
much smaller than 0.5, indicating class imbalance. The RUS method involves randomly
selecting a subset of observations with Y = 0 to match the number of observations with
Y = 1. Let n0 be the number of observations with Y = 0, so that n0 = n − n1. Then,
we randomly select n1 observations from the n0 observations with Y = 0 to create a
balanced dataset of 2n1 observations. RUS can be an effective method for addressing class
imbalance, particularly when the dataset is large enough so that randomly selecting a
subset of observations with Y = 0 does not result in loss of information. However, it may
not work well if the dataset is small or if the minority class contains important information
that is lost during under-sampling.

The ROS method involves randomly replicating observations with Y = 1 to create a
balanced dataset. Specifically, we randomly select n0 − n1 observations with replacement
from the original n1 observations with Y = 1 until we have a total of n0 observations with
Y = 1. This results in a dataset where the number of observations with Y = 0 is equal to
the number of observations with Y = 1. ROS can be an effective method for addressing
class imbalance, particularly when the dataset is small or when the minority class contains
important information that should not be lost during under-sampling. However, it may
not work well if the minority class contains outliers or noisy data.

SMOTE is a data augmentation method that creates synthetic minority class obser-
vations by interpolating between existing minority class observations. The basic idea is
to identify each minority class observation and then create new synthetic observations by
interpolating between it and its k nearest minority class neighbors. The SMOTE algorithm
is performed through the following steps:

1. Identify the minority class observations with Y = 1.
2. Randomly select a minority class observation xi from the dataset.
3. Find the k nearest minority class neighbors of xi in the feature space, where k is a

user-defined parameter.

Econometrics 2023, 11, 22 24 of 73

4. Create synthetic observations: for each nearest neighbor xj, generate a synthetic
observation xi,new by randomly interpolating between xi and xj in the feature space:

xi,new = xi + rand(0, 1) · (xj − xi)

where rand(0, 1) is a random number between 0 and 1.
5. Repeat steps 2–4 until the desired number of synthetic observations have been generated.

SMOTE can be an effective method for addressing class imbalance, particularly when the
dataset is small and when the minority class is not close to the majority class in the feature
space. However, it may not work well if the minority class is sparse or if there is high
overlap between the minority and majority classes in the feature space. Additionally, the
choice of k can impact the effectiveness of the algorithm, as larger values of k can result
in more diverse synthetic observations, but can also increase the risk of introducing noise
or outliers.

The ROSE technique aims to address class imbalance by generating artificial samples
from the feature space neighbourhood around the minority class. This technique combines
over-sampling and under-sampling, and comprises four steps:

1. Resample the majority class data using a bootstrap resampling technique to reduce
the number of majority class samples to a ratio of 50% via under-sampling.

2. Resample the minority class data using a bootstrap resampling technique to increase
the number of minority class samples to a ratio of 50% via over-sampling.

3. Combined the data from steps 1 and 2 to create a new training sample.
4. Generate new synthetic data for both the majority and minority classes in their respec-

tive neighborhoods. The neighborhood shape is defined by the kernel density function
with a Gaussian kernel KHj and a smoothing matrix Hj, j = 0, 1, with a d dimension

(where d is the number of independent variables), where Hj = diag(h(j)
1 , . . . , h(j)

d) and

h(j)
d is defined as follows:

h(j)
q =

(
4

(d + 2)n

)1/(d+4)
· σ̂(j)

q , q = 1, . . . , d.

Here, σ̂
(j)
q is the standard deviation of the q-th dimension of the observations belonging

to a given class.

These four steps are repeated for each training sample to produce a new synthetic
training sample of approximately equal size as the original dataset, with the number of
instances for both classes being equally represented. The ROSE technique represents an
effective method for generating synthetic samples, as it leverages the available information
to synthesize new samples that are more representative of the minority class. Moreover,
using the synthetic generation of new examples in ROSE strengthens the learning process
and estimates the distribution of the chosen measure of accuracy. The artificial training
set can be used to estimate the classification model, while the originally observed data are
reserved for testing the classifier. Alternatively, cross-validation or smoothed bootstrap
methods can be used. Creating new artificial examples from an estimate of the conditional
densities of the two classes allows for overcoming the limits of both the apparent error and
the holdout method, which are not advisable in extreme imbalanced learning due to the
scarcity of rare class data.

