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Ayn Rand, a remarkable American writer of Soviet origin, in her novel Atlas Shrugged, 

published in 1957, pointed out that money is a material expression of the principle that people can 

interact through trade and pay value for value. By producing goods and services, a person is 

convinced that he will exchange them for the product of someone else's labor with the help of 

money – "these pieces of paper, like gold, contain the energy of people who produce values." Eight 

years earlier, Benjamin Graham, in his book The Intelligent Investor, suggested that an investor 

compare the price of shares of a company that he was offered to purchase with their fair value, and 

purchase only those shares whose difference between the market price and the value of which was 

greatest, while emphasizing that only the future value mattered. 

Indeed, the method of discounting cash flows, Fisher, 1930, allows you to evaluate a 

company based on an assessment of its future cash flows, one way or another, created by the staff, 

controlling shareholders and the founders of the company. One of the main disadvantages of the 

method is the inability to accurately predict growth over a 3-5-year horizon, Chan et al., 2003. The 

importance of growth is due to the need to predict the company's revenue, which, in turn, is an 

argument for the cash flow function, Damodaran, 2002: 

𝐶𝐹 =  (𝑆𝐴𝐿𝐸𝑆 𝑥 𝐸𝐵𝐼𝑇𝐷𝐴𝑚𝑎𝑟𝑔𝑖𝑛 −  𝐷𝐴) 𝑥 ( 1 − 𝑇𝑎𝑥) −   𝛥𝑊𝐶 

Thus, the subject of the author's research interests is forecasting revenue (SALES) or its 

relative change - growth. From a practical point of view, when fixing other components of the cash 

flow formula, including EBITDA margin (EBITDAmargin), depreciation (DA), income tax rate 

(Tax) and changes in working capital (ΔWC), forecasting the company's revenue using real-time 

machine learning methods will allow determining the fair value of the company and use the data 

obtained to manage the stock portfolio. 

In order to choose a method, the author analyzed existing machine learning methods used to 

predict time series, product production and revenue. Shi et al., 2012 applied the ARIMA integrated 

moving average autoregression model, an artificial neural network (ANN), and the support vector 

machine (SVM) method to predict wind power and speed. Aries et al., 2013 showed that SVM 

outperformed ANN in predicting market volatility based on twitter data. Of all the machine 

learning methods, deep neural network and random forest found the smallest average absolute 

percentage error in predicting revenue in the fashion market, Loureiro, 2018. Lu et al., 2019 proved 
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that SVM surpassed ANN in predicting gas consumption. Dedi, 2020, predicting the demand for 

electricity, was convinced of the superiority of the long-term short-term memory (LSTM) network 

over SVM. Finally, Ma, 2021 showed that a two-channel convolutional neural network (CNN) is 

better at predicting retail sales than SVM. 

 Thus, the author made a choice in favor of regression of support vectors, a method that takes 

into account nonlinear patterns in the data, and the quality of which is comparable to a neural 

network of long–term short-term memory and a convolutional neural network. 

As input data, the author used quarterly revenue data from thirty-five companies traded on 

the Moscow Stock Exchange and news in Russian from 2004 to 2011. The news was filtered by 

keywords regarding unemployment. Thus, for each week from the study period, two news items 

about unemployment and the number of initial and repeated applications for unemployment in the 

United States were included in the dataset. According to the companies' quarterly revenue data, 

year-on-year growth was calculated, and news about unemployment was vectorized using Yandex 

GPT. The news vectors within one quarter are summarized. The data was divided into a training, 

test, and validation dataset. The SVR algorithm was trained using the sklearn library. Errors were 

calculated on the test dataset – the average absolute percentage error (MAPE), the coefficient of 

determination (R2) and the RMS error (RMSE). 

Based on the data obtained for company Magnit - R2 = 0.87, MAPE = 0.24, RMSE = 0.05 

with an average revenue increase of 0.25 in the test period – the author concluded that it is 

acceptable to predict the company's revenue using regression of the reference vectors of news 

about unemployment in the United States. 

The revenue predictions obtained, taking into account the premise that it will deviate within 

one standard deviation during the forecast period (Magnit's historical revenue increases are subject 

to the normal law), allowed us to calculate the company's fair value using the cash flow discounting 

method at the time of the publication of unemployment news in the United States, Damodaran, 

2002. The calculations obtained were used as the basis for a trading algorithm, the application of 

which to market data in the period from July 2019 to January 2022 allowed to obtain a yield of 

41.3% per annum. 
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