"Privacy or Security?": A Meta-Analysis Exploring Determinants of Attitudes towards Surveillance

Context: State of the Art, Research Problem and Aim of the Study

The field of surveillance research has been actively developing since the beginning of the 21st century¹. At the same time, the theoretical and empirical corpus of this field still lacks consensus on what social and political factors have the greatest impact on the attitude of citizens to the surveillance practices. At the level of scientometric indicators, researchers are paying increasing attention to the phenomenon of surveillance. They identify a number of potential predictors of attitude to surveillance, including institutional trust, conformism, right-wing authoritarianism, support of a strong state². They do not ignore another group of factors, which include levels of digital literacy, privacy protection behavior, privacy cynism, and, more generally, privacy concerns³.

However, the determinants of attitudes towards surveillance have not been systematically analyzed due to the multifaceted nature of the concept. Existing meta-analyses focus only on self-disclosure and privacy protection behavior⁴; some papers focus on the effectiveness of CCTV in reducing crime⁵. We state that there is a lack of works devoted to meta-analysis of factors determining lay attitudes towards surveillance. Thus, the **aim of the study** is to identify the factors determining attitudes towards surveillance; after that, to identify the moderators of the relationship between the identified factors and attitudes towards surveillance using the meta-analysis procedure.

The **main hypothesis** of the study is formulated as follows: the stronger the privacy concerns, the worse the attitude towards surveillance; at the same time, the stronger the perceived threats (security concerns), the better the attitude towards surveillance.

¹ For more on the concept of surveillance and the history of the development of this subject area, *see* Lyon, D. (2022). Surveillance. *Internet Policy Review*, 11(4), 1-18; Galič, M., Timan, T., & Koops, B. J. (2017). Bentham, Deleuze and beyond: An overview of surveillance theories from the panopticon to participation. *Philosophy & Technology*, 30, 9-37.

² See Kalmus, V., Bolin, G., & Figueiras, R. (2024). Who is afraid of dataveillance? Attitudes toward online surveillance in a cross-cultural and generational perspective. *new media & society*, 26(9), 5291-5313; Nam, T. (2019). What determines the acceptance of government surveillance? Examining the influence of information privacy correlates. *The Social Science Journal*, 56(4), 530-544.

³ See Ioannou, A., & Tussyadiah, I. (2021). Privacy and surveillance attitudes during health crises: Acceptance of surveillance and privacy protection behaviours. *Technology in Society*, 67, 101774; Thompson, N., McGill, T., Bunn, A., & Alexander, R. (2020). Cultural factors and the role of privacy concerns in acceptance of government surveillance. *Journal of the Association for Information Science and Technology*, 71(9), 1129-1142; Lutz, C., Hoffmann, C. P., & Ranzini, G. (2020). Data capitalism and the user: An exploration of privacy cynicism in Germany. *New media & society*, 22(7), 1168-1187.

⁴ See Baruh, L., Secinti, E., & Cemalcilar, Z. (2017). Online privacy concerns and privacy management: A meta-analytical review. *Journal of Communication*, 67(1), 26-53; Maseeh, H. I., Jebarajakirthy, C., Pentecost, R., Arli, D., Weaven, S., & Ashaduzzaman, M. (2021). Privacy concerns in e-commerce: A multilevel meta-analysis. *Psychology & Marketing*, 38(10), 1779-1798.

⁵ See Piza, E. L., Welsh, B. C., Farrington, D. P., & Thomas, A. L. (2019). CCTV surveillance for crime prevention: A 40-year systematic review with meta-analysis. *Criminology & public policy*, *18*(1), 135-159.

Empirical Base for Meta-Analysis

We used Web of Science as the main tool for searching for articles. We selected publications in Russian and English that belonged to the WoS Research Area – "Social Sciences". We downloaded 10,770 articles meeting the specified search conditions (*see below*).

TS = ((surveillance OR dataveillance)
AND (accept* OR attitude* OR support* OR approv* OR tolerance OR consent*))

After keyword analysis and affiliation with more specialized areas within the social sciences, 7,801 articles were excluded. Among the remaining 2,969 articles, there were still articles that were not relevant to tacit surveillance research in the context of interest. We were faced with the task of selecting only those articles that would be suitable for further meta-analysis thematically. The selection of articles for meta-analysis was done in *four steps* (*see* Figure 1).

In the first stage, a random forest model was built to classify 2,969 articles: the training sample included 15% of observations and the validation sample included 5%. The classification model included k-fold cross-validation and hyperparameter tuning. Using the final model (accuracy = 0.87, f1 = 0.91, auc = 0.68), 934 articles were selected.

In a second step, articles were evaluated by coders on three criteria: (1) fit with the topic area; (2) presentation of the results of quantitative analysis of survey data; and (3) attitudes toward observation were presented as the dependent variable. The average percentage of agreement of the coders to which the articles were randomly assigned is 89.67%. At this stage, 117 papers were identified that met all three criteria. Another 34 articles that were not indexed in the WoS database but met the criteria joined these.

At the third stage 151 articles were analyzed in detail. As a result, it was obtained that the most investigated potential predictors of attitudes towards surveillance were a set of political and social characteristics (*see* Table 1).

Predictor (independent variable)	n papers (out of 151)
Trust (intuitional, social, political etc.)	43 (28.48%)
Privacy concerns	38 (25.17%)
Perceived threats	30 (19.87%)
Political views / political orientation	24 (15.89%)
Support of government	18 (11.92%)
Perceived security	8 (5.30%)

Table 1. Predictors of attitudes toward surveillance: frequency of occurrence in studies.

At the fourth stage, we added additional research materials to the database that met all the necessary conditions but had not been selected earlier. These materials included unpublished reports, student papers, dissertations, and preprints.

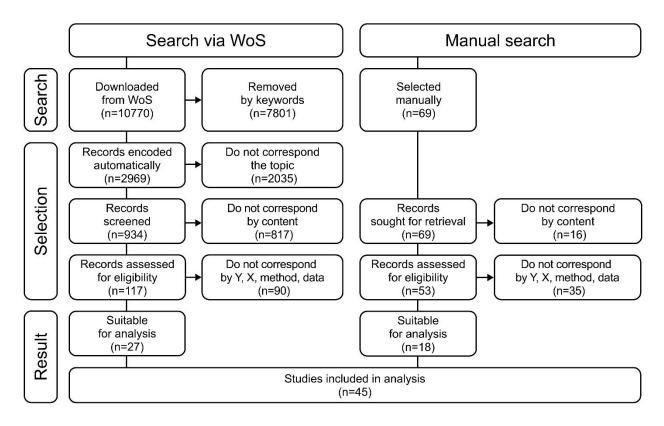


Figure 1. PRISMA diagram for the meta-analysis materials.

Results of Meta-Analysis

The meta-analysis included 149 effect sizes from 45 studies. All extracted effect sizes are presented separately (*see* Figure 2).

The heterogeneity parameters in the fixed effects model argue in favor of the need to address the random effects model. In turn, the random effects model (es = 0.0526, t = 2.18, p < .05) does not preclude the investigation of more complex mixed effects models.

A mixed-effects model with subgroup analysis by predictor type indicated the presence of statistically significant effects (Q = 86.15, p < .001): privacy concerns reduced support for surveillance (es = -0.1376 [-0.1896; -0.0849], p < .001), while perceived threats increased it (es = 0.2139 [0.1612; 0.2654], p < .001). Examining confidence intervals of group mean effect sizes, we are cautious to note that the strength of the association of surveillance support with perceived threats is higher than with privacy concerns. The findings argue in favor of testing the robustness of the differences found when including other variables in the meta-regression.

A meta-regression with the inclusion of effect size moderators was constructed on the data (*see* Table 2). We find the overall quality of the model in terms of explained heterogeneity of effects to be satisfactory with $R^2 = 0.4782$. We note that predictor type, the first independent variable in the model after the constant, remains the only consistently statistically significant at p < .0001. The direction of the relationship remains unchanged, providing no reason to reject our hypothesis.

Table 2. Coefficients of the meta-regression model.

Coefficient	B	se	Т
Intercept	-0.0942	0.1238	-0.7605
IV Type: Perceived threats (ref. 'Privacy concerns')	0.3570***	0.0378	9.4414
Agent of Surveillance: Private companies (ref. 'Government')	0.0923	0.0956	0.9655
Surveillance Data (ref. 'All data')			
Surveillance Data: Internet	-0.0157	0.0471	-0.3339
Surveillance Data: Physical	-0.0646	0.0494	-1.3083
Sampling Type (ref. 'Convenience sample')			
Sampling Type: Quota	0.1315^{*}	0.0590	2.2264
Sampling Type: Representative	-0.0149	0.0734	-0.2031
External Indicators			
Homicides on 100 000 population (Our World in Data)	-0.0348**	0.0118	-2.9418
Democracy Index (V-Dem, 2024)	-2.7867**	0.8498	-3.2793
Political Regime (V-Dem, 2024)	0.5801^{**}	0.1816	3.1942
Human Rights Compliance (V-Dem, 2024)	0.6793	0.3998	1.6992

We additionally note that statistically-significant differences are observed in terms of:

(a) sampling type – effect sizes are higher in quota samples compared to convenience samples;
(b) homicide rate – as the homicide rate per 100,000 population increases, the effect size decreases;
(c) democracy index – as the democracy index increases, the effect size decreases; and (d) political regime – as the political regime is liberalized, the effect size increases.

The results of the study show that privacy concerns are negatively related to support for surveillance, while perceived threats are the opposite. It is cautiously observed that the former relationship is weaker than the latter. Moreover, it is shown that these relationships are also moderated by external predictors describing the countries in which the research was conducted: crime rate, democracy index and type of political regime.

Study	Ficher's	Z SE Type	Correlation	COR	95%-CI	Weight
Kokkoris & Kamleitner 2020_1 Quevedo & Tuan 2021_1	-1.02 -0.55	0.06 PC + 0.05 PC	_	-0.77	[-0.81; -0.72] [-0.57; -0.43]	0.1% 0.1%
Cayford et. al 2019_1 Nam 2019_3	-0.51	0.05 PC 0.05 PC	+	-0.47	[-0.54; -0.38] [-0.51; -0.37]	0.1%
Nader et. al 2023_4 Liu et. al 2024_a_2	-0.40	0.04 PC 0.03 PC	+	-0.44	[-0.50; -0.38] [-0.48; -0.38]	0.2%
Trüdinger & Ziller 2022_2 Ziller & Helbling 2021_7	-0.40	0.02 PC 0.03 PC 0.10 PC	*	-0.38 -0.38	[-0.41; -0.34] [-0.43; -0.32]	0.7%
Thompson et. al 2018_1 Thompson et. al 2018_2	-0.37 -0.37	0.10 PC		-0.35 -0.35	[-0.51; -0.16]	0.0%
Vermeersch & amp; De Pauw 2017_2 Svenonius & amp; Björklund 2018_1 Guo et. al 2023_1	-0.37 -0.36	0.02 PC		-0.35 -0.35	[-0.43; -0.27] [-0.38; -0.31]	0.1% 0.9%
Guo et. al 2023_1 Svenonius & Björklund 2018_3 Kostka & Habich-Sobiegalla 2024_2	-0.35 -0.31	0.02 PC 0.02 PT	+	-0.34 -0.30	[-0.38; -0.30] [-0.33; -0.26]	0.7% 0.9%
Eriedewald 2016 1	-0.29 -0.25 -0.24	0.02 PC 0.01 PC 0.04 PC		-0.28 -0.24 -0.24	[-0.32; -0.24] [-0.25; -0.23] [-0.31; -0.17]	0.7% 8.5% 0.2%
Sakiyama et. al. 2017_1 Kostka & amp; Habich-Sobiegalla 2024_3 Thompson et. al 2020_1	-0.23	0.02 PC 0.10 PC	+	-0.23	[-0.27; -0.19] [-0.41; -0.04]	0.2%
Ziller & amp; Helbling 2021_3 Nam 2019_2	-0.23	0.03 PC 0.05 PC	+	-0.22	[-0.28; -0.17] [-0.30; -0.13]	0.4%
Miethe et. al 2023_1 Thompson et. al 2018 3	-0.21	0.04 PC 0.10 PC		-0.21 -0.21	[-0.28; -0.13] [-0.39; -0.01]	0.2%
Ziller & amp; Helbling 2021_5 Kalmus et. al 2024_1	-0.21 -0.21	0.03 PC 0.03 PC	-	-0.21 -0.20	[-0.26; -0.15] [-0.26; -0.15]	0.3% 0.3%
Ziller & amp; Helbling 2021_1 Esposti et. al 2021_7	-0.20	0.04 PC	÷	-0.20	[-0.24; -0.16] [-0.28; -0.11]	0.9%
Esposti et. al 2021_19 Krueger et. al 2020_1 Westerlund et. al 2021_2	-0.19 -0.19 -0.19	0.04 PC 0.03 PC 0.03 PC	+	-0.19 -0.19 -0.19	[-0.27; -0.10] [-0.25; -0.13] [-0.23; -0.14]	0.2% 0.3% 0.5%
Gurinskaya 2020_1 Nader et. al 2023_1	-0.19 -0.18 -0.17	0.03 PC 0.04 PC 0.04 PT	-	-0.19 -0.18 -0.17	[-0.26; -0.10] [-0.24; -0.10]	0.2%
Kalmus et. al 2024_5 Westerlund et. al 2021_3	-0.16	0.03 PC 0.03 PC	-	-0.16	[-0.22; -0.10] [-0.21; -0.11]	0.3%
Esposti et. al 2021_15 Kostka & amp; Habich-Sobiegalla 2024 1	-0.16 -0.16	0.04 PC 0.02 PC	+	-0.16 -0.16	[-0.24; -0.07] [-0.20; -0.12]	0.2%
Nam 2019_1 Esposti et. al 2021_3	-0.16 -0.15	0.05 PC 0.04 PC	=	-0.16 -0.15	[-0.24; -0.06] [-0.23; -0.06]	0.1% 0.2%
Kalmus et. al 2024_3 Esposti et. al 2021_11	-0.14 -0.13	0.03 PC 0.04 PC	-	-0.14 -0.13	[-0.20; -0.08] [-0.22; -0.04]	0.3% 0.2%
Esposti et. al 2021_23 Sakiyama et. al. 2017_2	-0.13 -0.10	0.04 PC	-	-0.13 -0.10	[-0.22; -0.04] [-0.18; -0.02]	0.2%
Arsenault et. al 2024_5 Liu et. al 2024_a_3 Pavone & amp; Degli Esposti 2012_1	-0.10 -0.10 -0.10	0.04 PT 0.03 PC 0.08 PC	+	-0.10 -0.10 -0.10	[-0.18; -0.02] [-0.16; -0.03]	0.2%
Guo et. al 2022_1 Liu et. al 2024 b 2	-0.08	0.02 PC 0.05 PC	+	-0.10 -0.08 -0.07	[-0.25; 0.06] [-0.12; -0.04] [-0.17; 0.03]	0.0% 0.7% 0.1%
Westerlund et. al 2021_1 Liu et. al 2024_b_1	-0.06	0.03 PC 0.05 PC	+	-0.06	[-0.11; -0.03] [-0.16; 0.04]	0.5%
Miethe et. al 2023_2 Nader et. al 2023_2	-0.05	0.04 PC 0.04 PT	-	-0.05	[-0.13; 0.03] [-0.11; 0.03]	0.2%
Su et. al 2022_5 Kalmus et. al 2024_8	-0.02	0.02 PT 0.03 PC	*	-0.02	[-0.06; 0.01] [-0.08; 0.04]	0.9%
Valentino et. al 2020_6 Segerstedt 2017 1	-0.02 -0.02	0.03 PT 0.02 PT	+	-0.02 -0.02	[-0.08; 0.04] [-0.06; 0.02]	0.3%
Ioannou & Tussyadiah 2021_1 Esposti et. al 2021_17	-0.00 0.00	0.05 PC 0.04 PT	+	-0.00 0.00	[-0.11; 0.10] [-0.09; 0.09]	0.1% 0.2%
Esposti et. al 2021_21 Segerstedt 2017_2	0.01	0.04 PT 0.02 PT	Ŧ	0.01	[-0.08; 0.10] [-0.03; 0.05]	0.2%
Gurinskaya 2020_4 Su et. al 2022_8 Kossowska et. al 2011_3	0.01 0.02 0.02	0.04 PT 0.02 PT 0.09 PT	Ŧ	0.01 0.02 0.02	[-0.07; 0.09] [-0.02; 0.05] [-0.15; 0.20]	0.2% 0.9% 0.0%
Esposti et. al 2021_5 Esposti et. al 2021_10	0.02 0.03 0.03	0.04 PT 0.04 PC		0.02 0.03 0.03	[-0.15; 0.20] [-0.06; 0.12] [-0.06; 0.12]	0.2%
Esposi et. al 2021_10 Esposti et. al 2021_4 Esposti et. al 2021_8	0.04	0.04 PC 0.04 PC	+	0.04	[-0.05; 0.13] [-0.05; 0.13]	0.2%
Esposti et. al 2021_9 Esposti et. al 2021_20	0.04	0.04 PT 0.04 PC	+	0.04	[-0.05; 0.13] [-0.05; 0.13]	0.2%
Miethe et. al 2023_3 Vermeersch & De Pauw 2017_1	0.04	0.04 PC 0.05 PT	+	0.04	[-0.04; 0.12] [-0.05; 0.13]	0.2% 0.1%
Thompson et. al 2020_3 Su et. al 2022_2	0.04 0.05	0.08 PC	+	0.04 0.05	[-0.13; 0.20] [0.01; 0.08]	0.0%
Esposti et. al 2021_12 Kalmus et. al 2024_7	0.05	0.04 PC 0.03 PC	+	0.05 0.05	[-0.04; 0.14] [-0.01; 0.11]	0.2% 0.3%
Liu et. al 2024_a_1 Svenonius & Björklund 2018_4 Gurinskaya 2020_3	0.05	0.03 PT 0.02 PT	+	0.05	[-0.01; 0.12] [0.02; 0.09]	0.3%
Gurinskaya 2020_3 Miethe et. al 2023_4 Lüdemann & Schlepper 2012_2	0.06 0.06 0.06	0.04 PT 0.04 PT 0.02 PT	÷	0.06 0.06 0.06	[-0.02; 0.14] [-0.02; 0.14] [0.02; 0.10]	0.2% 0.2% 0.7%
Ludemann & amp; Schlepper 2012_2 Kaskeleviciute & amp; Matthes 2023_1 Esposti et. al 2021_6	0.06	0.02 PT 0.04 PT 0.04 PC	÷	0.06	[-0.02; 0.10] [-0.02; 0.15] [-0.02; 0.16]	0.2%
Esposi et. al 2021_6 Esposti et. al 2021_16 Kalmus et. al 2024_6	0.07	0.04 PC 0.03 PT	-	0.07	[-0.02; 0.16] [-0.02; 0.16] [0.02; 0.14]	0.2%
Nader et. al 2023_3 Esposti et. al 2021 18	0.08	0.04 PT 0.04 PC	-	0.08	[0.01; 0.15]	0.2%
Esposti et. al 2021_22 Conrey & amp; Haney 2024_2	0.08 0.08	0.04 PC 0.06 PT	1	0.08 0.08	[-0.01; 0.17] [-0.03; 0.19]	0.2% 0.1%
Kalmus et. al 2024_4 Valentino et. al 2020_1	0.08 0.09	0.03 PT 0.03 PT	+	0.08 0.09	[0.02; 0.14] [0.03; 0.15]	0.3% 0.3%
Lüdemann & amp; Schlepper 2012_1 Chmel et. al 2021_2	0.09	0.02 PT 0.01 PT 0.04 PT	-	0.09	[0.05; 0.13] [0.08; 0.11]	0.7% 4.7% 0.2%
Esposti et. al 2021_1 Esposti et. al 2021_24	0.10 0.10 0.10	0.04 PT 0.04 PC 0.02 PT	-	0.10 0.10 0.10	[0.01; 0.18] [0.01; 0.19] [0.05; 0.15]	0.2% 0.2% 0.6%
Trüdinger & Steckermeier 2017_1 Conrey & Haney 2024_1 Valentino et. al 2020_2	0.10	0.02 PT 0.09 PT 0.03 PT		0.10	[-0.05; 0.15] [-0.07; 0.27] [0.05; 0.17]	0.0%
Svenonius & amp; Björklund 2018_2 Esposti et. al 2021 14	0.11	0.02 PC 0.04 PC	+	0.11	[0.07; 0.15]	0.8%
Chmel et. al 2021_1 Valentino et. al 2020_3	0.11 0.12	0.01 PT 0.03 PT	-	0.11 0.12	[0.09; 0.13]	4.7% 0.3%
Valentino et. al 2020_5 Esposti et. al 2021_2	0.12	0.03 PT 0.04 PC		0.12 0.12	[0.06; 0.18] [0.03; 0.20]	0.3% 0.2%
Kalmus et. al 2024_9 Cohrs et. al 2005_1	0.12 0.13	0.03 PC 0.04 PT		0.12 0.13	[0.06; 0.18] [0.05; 0.21]	0.3% 0.2%
Kokkoris & amp; Kamleitner 2020_3 Su et. al 2022_4 Wnukl et. al 2020 1	0.14	0.06 PT 0.02 PT 0.03 PT	-	0.14	[0.03; 0.25]	0.1%
Vinuki et. al 2020_1 Kossowska et. al 2011_4 Valentino et. al 2020_4	0.15 0.15 0.16	0.03 PT 0.08 PT 0.03 PT	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0.15 0.15 0.16	[0.10; 0.20] [0.00; 0.30] [0.10; 0.22]	0.4% 0.1% 0.3%
Su et. al 2022_1 Gurinskaya 2020_2	0.17	0.02 PT 0.04 PT	1	0.17	[0.13; 0.20]	0.9%
Esposti et. al 2021_13 Jin et al. 2024_1	0.18	0.04 PT 0.01 PT		0.18	[0.09; 0.26]	0.2%
Kossowska et. al 2011_2 Su et. al 2022_3	0.21 0.23	0.12 PT 0.02 PT		0.21 0.23	[-0.03; 0.43] [0.19; 0.26]	0.0% 0.9%
Bradford et. al 2020_1 Su et. al 2022_7	0.23	0.03 PT 0.02 PT	-	0.23 0.23	[0.17; 0.29] [0.20; 0.27]	0.3%
Kalmus et. al 2024_2 Su et. al 2022_9	0.24	0.03 PT 0.02 PT 0.06 PT	+	0.24	[0.18; 0.29] [0.23; 0.30]	0.3%
Kokkoris & amp; Kamleitner 2020_2 Zeng & amp; Wong 2023_1 Breakdorff et. el 2015_2	0.28 0.28 0.28	0.06 PT 0.03 PT 0.06 PT		0.27 0.27 0.27	[0.16; 0.37] [0.21; 0.33] [0.15; 0.38]	0.1% 0.3% 0.1%
Brockdorff et. al 2015_3 Ziller & amp; Helbling 2021_2 Thompson et. al 2020_4	0.28	0.02 PT 0.08 PT	+	0.27	[0.15; 0.38] [0.24; 0.31] [0.12; 0.43]	0.9%
Kao & Sapp 2022_1 Ziller & Helbling 2021 4	0.29	0.04 PC 0.03 PT	+	0.28	[0.22; 0.35]	0.2%
Kao & Sapp 2022_3 Brockdorff et. al 2015_2	0.32 0.33	0.04 PC 0.06 PT	+	0.31 0.32	[0.25; 0.38]	0.2% 0.1%
Arsenault et. al 2024_1 Kao & Sapp 2022_2	0.34 0.35	0.04 PT 0.04 PC	-	0.33 0.33	[0.26; 0.40] [0.27; 0.40]	0.2% 0.2%
Trüdinger & amp; Steckermeier 2017_2 Brockdorff et. al 2015_4	0.38 0.38	0.02 PT 0.06 PT	-	0.36 0.36	[0.32; 0.40] [0.25; 0.46]	0.6% 0.1%
Su et. al 2022_6 Kossowska et. al 2011_1 Brockdorff et. al 2015_5	0.38	0.02 PT 0.11 PT 0.06 PT	*	0.37	[0.33; 0.40] [0.19; 0.56]	0.9%
Brockdorff et. al 2015_5 Brockdorff et. al 2015_1 Chmel et. al 2021_3	0.42 0.42 0.43	0.06 PT 0.06 PT 0.01 PT		0.39 0.40 0.41	[0.28; 0.49] [0.29; 0.50] [0.39; 0.42]	0.1% 0.1% 3.8%
Ziller & amp; Helbling 2021_6 Arsenault et. al 2024 2	0.44	0.03 PT 0.04 PT		0.41	[0.36; 0.46] [0.35; 0.48]	0.3%
Jin et al. 2024_3 Ziller & amp; Helbling 2021_8	0.50	0.01 PT 0.03 PT	-	0.46	[0.45; 0.47]	10.1% 0.3%
Thompson et. al 2020_2 Zhang et. al 2019 1	0.55	0.10 PT 0.03 PT	* * * * * * * * * * * * * * * * * * * *	0.50 0.51	[0.34; 0.63] [0.47; 0.55]	0.0% 0.3%
Trüdinger & amp; Ziller 2022_1 Arsenault et. al 2024_4	0.62	0.02 PT 0.04 PT	÷	0.55	[0.52; 0.58] [0.51; 0.62]	0.7%
Jin et al. 2024_2 Thompson et. al 2018_4 Haper et. al 2021_1	0.80 0.89 0.94	0.01 PT 0.10 PT 0.03 PT		0.66	[0.66; 0.67] [0.60; 0.80] [0.70; 0.76]	11.7% 0.0% 0.3%
Haner et. al 2021_1 Arsenault et. al 2024_3	1.10	0.03 PT 0.04 PT	-	+ 0.80	[0.70; 0.76] [0.77; 0.83]	0.2%
Common effect model Prediction interval			i	0.19	[0.19; 0.19] [-0.48; 0.56]	100.0%
Heterogeneity: $l^2 = 99.6\%$, $p = 0$			-0.5 0 0.5			

Figure 2. Forest diagram for the detected effect sizes.