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1 Introduction

Sometimes an individual’s success is explained, or even discredited, as resulting from an

initial stroke of good luck. Bestselling authors such as Gladwell (2008) or Frank (2016)

document a multitude of careers of over-achievers, ranging from the arts to business, that

were kick-started by fortunate circumstances or events. Even major scientific achieve-

ments, such as special relativity theory, are debated to be the consequence of external

factors rather than genius (Gallison, 2003). The idea that, in the extreme, success is no

longer attributable to skill-differentials finds support in empirical evidence (Keuschnigg et

al., 2023) and numerical simulations (Denrell and Liu, 2012), emphasizing the importance

of the serial correlation of outcomes.

Underlying such narratives is the concern that economic institutions or organizational

practices may amplify the role of luck by making its effects long-lasting. A common

argument, across different disciplines of the Social Sciences, is that resources, favoritism,

or biases granted to early performers will increase the likelihood with which an initial

stroke of luck translates into a final economic advantage. For example, academic tracking

in schools (Gamoran and Mare, 1989) and professional “fast tracks” in firms (Rosenbaum,

1979; Forbes, 1987; Baker et al., 1994) inflate the importance of early performance for

final success. As a consequence of such policies, chance events such as graduating during a

recession or being the oldest kid in class can have long-lasting effects on both, labor market

outcomes (Oreopoulos et al., 2012) and educational achievements (Bedard and Dhuey,

2006).1 A related phenomenon in Finance, known as rich-get-richer dynamics, describes

the finding that “being at the right time in the right place” creates future investment

opportunities capable of explaining performance persistence of hedge funds (Cong and

Xiao, 2022) and venture capitalists (Nanda et al., 2020). Finally, the Sociology literature

uses the terms Matthew principle or cumulative advantage (Merton, 1968; DiPrete and

Eirich, 2006) and argues that performance differentials, such as outstanding publication

records of scientists at elite universities, can be largely explained by accumulated resource

advantages rather than inherent differences in talent (Zhang et al., 2022).

By implementing biases, the aforementioned institutions induce correlation between

initial and final outcomes in situations where noise has a substantial influence on perfor-

mance. They hereby improve selective efficiency, i.e. the allocation of resources to the

most productive individuals, as long as initial success can be attributed to merit, com-

monly defined as a combination of individual talents or actions (Sen, 2000). However, in

1Evidence for relative age effects has been documented for physical activities, such as becoming a
player in the National Hockey League (Deaner et al., 2013), as well as intellectual achievements such as
being selected as a CEO of a S&P 500 company (Du et al., 2012).
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the limit where noise swamps ability and effort in the determination of outcomes, biases

merely make luck persistent by inducing final outcomes to depend on initial conditions

that are entirely random. In this paper we argue that, while seemingly at odds with mer-

itocratic principles, making luck persistent can be rationalized as a characteristic feature

of an organization’s “selection of the best”.2

By explaining how institutions shape the role of luck for individual success, our theory

contributes to our understanding of the “origin” of economic inequality. This is important

because economic inequality appears to be tolerated when based on merit but not when

based on luck (Konow, 2000; Fong, 2001; Cappelen et al., 2007; Cappelen et al., 2013).

Beliefs in the relevance of luck increase a country’s social spending (Alesina and Angele-

tos, 2005) and its citizens’ willingness to implement redistributive policies (Almås et al.,

2020). The connection between luck and success also affects what recent critics of meritoc-

racy have denoted as the “social divide” between the “deserving” and the “undeserving”

(Sandel, 2020). To the extent that political polarization is driven by group-identification

(Duclos et al., 2004), individual experiences concerning the role of luck for success may

contribute to shape political outcomes. This is especially relevant when beliefs about

luck select between a low-redistribution “American” equilibrium emphasizing the role of

merit and a high-redistribution “European” equilibrium acknowledging the role of luck

(Benabou and Tirole, 2006; Alesina et al., 2018).3 By rationalizing the persistent effects

of luck as an institutional practice and by investigating its determinants, our theory may

thus contribute to our understanding of cross-country differences in economic inequality

and political polarization.

In Section 2 we present a stylized model of a two-agent, two-stage selection process

in which individual performance, at each stage, is the sum of an agent’s time-invariant,

unobservable ability, privately-chosen effort, and a transitory shock. Agents are ex ante

identical to the organization but may share private information about relative abilities.

The organization observes only the ordinal ranking of performances at each stage and

attempts to select the most able agent.4 Agents choose efforts to maximize the probability

2The term “meritocracy” originates from Young’s (1958) apocalyptic vision a future society in which
“merit” serves as the central determinant of an individual’s power and wealth. In spite of a dispute over
what constitutes merit, modern democracies claim to have adopted merit as a basis for their allocation
of resources and decision-making power (Piketty, 2014).

3Experimental studies on redistribution find that U.S. subjects implement Gini-coefficients 0.2 points
lower when incomes are based on luck than when incomes are based on merit, which would be sufficient
to bring down U.S. inequality to European levels (Lefgren et al., 2016).

4Ordinal performance measurement arises naturally when performance is difficult to quantify. For
instance, Lazear (2000) documents that for managers, piece rates are employed ten times less frequently
than for operatives, and attributes this difference to the absence of a cardinal measure of managerial
performance. Arguably, ordinal performance measurement is thus the most relevant case to consider in
situations where selection matters most, i.e. towards the top of an organization’s hierarchy.
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of being selected, minus their effort costs.5 The organization’s optimal selection rule

augments the second-stage performance of the agent who performed best in the first

stage by use of an additive bias and selects the agent who performs best in the second

stage. Our main variable of interest is the persistence of early success, i.e. the probability

with which, in equilibrium, the agent with the better initial performance becomes selected

in the final stage.

We start our analysis in Section 3 by showing that, when agents have no private

information about their relative abilities, effort choices will be identical across agents in

both stages, in spite of the asymmetries induced by learning from first-stage performance

and application of second-stage bias. In the absence of private information, effort choices

thus have no effect on selective efficiency, implemented bias, nor persistence. Our main

result shows that in the limit, where noise swamps ability differences as a determinant of

performance, equilibrium bias converges to a strictly positive value. In other words, even

when ability differences have only negligible impact on performance, optimal bias makes

first-stage “winners” considerably more likely to become selected than first-stage “losers”.

This shows that the persistence of luck illustrated by our motivating examples does not

have to be a consequence of too much or the wrong kind of bias being employed, but can

be explained as an institutionalized feature of an organization’s attempt to “select the

best” in environments where individual performance is noisy.

The basic intuition for this result can be explained as follows. Optimal bias balances

the informativeness of the agents’ performance rankings across stages and is such that,

if the first-stage loser just managed to achieve a hypothetical – because unobservable –

second-stage draw despite the bias against him, the organization would be indifferent as to

which agent to select. In the limit, both, an unbiased first-stage win and a second-stage

draw against bias become uninformative which means that optimal bias has to equate

the rates at which their informativeness varies with the agents’ heterogeneity. However,

setting bias equal to zero not only nullifies the informativeness of a second-stage draw

but also the rate at which this informativeness changes with the agents’ heterogeneity. In

other words, a strictly positive bias arises in the limit because unless first-stage losers are

disadvantaged relative to first-stage winners even when ability differences are negligible,

the informativeness of a second-stage draw cannot keep up with the informativeness of a

first-stage win when ability differences start to matter.

In Section 4 we consider how the persistence of luck resulting from an organization’s

use of bias is affected by informed agents’ strategic behavior by turning attention to

5Lazear and Rosen (1981) argue that competing to become selected, e.g. for promotion, can provide
workers inside firms with efficient incentives to exert effort and may thus substitute incentive schemes
that rely on cardinal performance measurement when performance is hard to quantify.
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the case where agents share private information about their relative abilities. Because,

in our setting, effort acts as a substitute for ability in creating performance, strategic

behavior might be expected to decrease the informativeness of the agents’ first-stage

ranking, thereby reducing or even eliminating the need to make luck persistent through

the application of a second-stage bias. We show that, contrary to this intuition, the agent

thought more likely to be the more able agent exerts a strictly larger first-stage effort

than his rival. Effort choices thus reinforce the agents’ ability differential and under mild

conditions on the agents’ cost functions, equilibrium bias can be shown to be increasing

in the agents’ informational advantage. Hence, while biased selection arises from the

organization’s ignorance of the agents’ abilities, information on the side of the agents

does not mitigate but rather amplifies the persistent effects of luck. This result resonates

well with the dominant role of biased selection – in the form of fast-tracking and high-

potential programs – for careers such as management consulting where collaboration in

small, close-knit teams allows workers to obtain an informational advantage over their

superiors regarding their co-workers abilities.

To provide further insight into the relation between selective efficiency and the persis-

tence of luck, Section 5 considers the counter-factual situation where performance infor-

mation is cardinal rather than ordinal. In this case, the optimal bias can condition on the

first-stage margin of victory. We show that in the limit, the equilibrium bias under ordi-

nal information equals an appropriately-defined average of the optimal cardinal biases, as

the margin of victory varies. We provide a sufficient condition under which a restriction

to ordinal rather than cardinal performance information makes luck more persistent (on

average). This condition is satisfied when the distribution of noise is “sufficiently nor-

mal” and our result then implies that organizations can be expected to make luck more

persistent when individual performance can be ranked but is hard to quantify. As ordinal

performance measurement is more prevalent towards the top of an organization’s hierar-

chy, our theory thus highlights the special role of luck for selection into those positions

where the choice of the “right” or the “wrong” agent can be most consequential.

Related literature. Our paper contributes to the literature on organizational learning.

Driven by emerging evidence about the functioning of internal labor markets (Baker et

al., 1994), the seminal studies by Farber and Gibbons (1996), Gibbons and Waldman

(1999, 2006), and Altonji and Pierret (2001) have identified firms’ learning about work-

ers’ productivity as a key factor explaining wage and promotion dynamics within firms.

A robust empirical finding is that early wage increases and early promotions increase the

probability to become promoted at a later stage. Whether this correlation is caused by
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worker heterogeneity or by a “fast-track effect” is controversial, with U.S. evidence in

favor of the former (Belzil and Bognanno, 2008) and Japanese evidence pointing towards

the latter (Ariga et al., 1999). While in the seminal models serial correlation of promotion

rates arises from workers’ time-invariant ability differences, our model shows that even

when ability differences become negligible, serial correlation can be explained by the non-

vanishing optimality of fast-tracking (bias). The special relevance of early performance

for careers is underlined by Lange’s (2007) finding that “employers learn fast”.6 Pastorino

(2024) supports this view by documenting firms’ tendency to assign newly employed man-

agers to tasks that are particularly informative about their abilities. According to our

theory, such a task assignment augments the persistence of luck because a greater bias

is required to raise the informativeness of the less informative later tasks. Her structural

estimates provide strong evidence that learning, besides human capital accumulation, has

a sizeable impact on career outcomes. Finally, the “pattern of promotions” that arises

from optimal biased selection is reminiscent of the “late beginner’s effect” documented

by Chiappori et al. (1999) which asserts that workers who perform well after performing

badly have a higher chance to become promoted than workers with performances in re-

versed order. While their explanation relies on the influence of wage rigidity on symmetric

employer learning, in our model “late beginners” become selected because their late win

against a bias is a more informative signal about their ability than their early loss in the

absence of bias.

2 Model

We consider an organization consisting of a risk-neutral principal and two agents i ∈
{A,B} with potentially heterogeneous abilities. The principal needs to select one of the

agents for a future task (e.g. CEO or chief of staff) whose payoff to the principal, Π(a), is

increasing in the selected agent’s ability, a. The principal can base his selection on agents’

performance but his choice is complicated by the fact that neither the agents’ abilities nor

their efforts are observable and that performance information is noisy and only ordinal

rather than cardinal.

Agents’ abilities ai ∈ ℜ are assumed to be distributed on {a, a + h} with parameter

6Using Armed Forces Qualification Test scores as measures of unobserved ability, Lange (2007) finds
that it takes only 3 years for employers’ expectation error about workers’ productivity to decline by one
half. Similarly, Lluis (2005) finds evidence that employer learning affects mobility between upper and
executive levels of German firms but only for workers below 35 years of age. For more experienced workers
learning is found to continue to matter when workers differ in how their productivity evolves over time (
Kahn and Lange, 2014).

6



h > 0 denoting their potential heterogeneity.7 The principal and the agents share a

common prior, q0 ≡ P(aA > aB|aA ̸= aB), but for the principal agents A and B are

indistinguishable. This allows us to differentiate between the case q0 ∈ (1
2
, 1] where

agents have superior information about their relative abilities and the case q0 = 1
2
where

agents are equally uninformed as the principal.8

To capture the dynamic nature of organizational learning, we assume that the princi-

pal observes the agents’ relative performance during two stages. In each stage t ∈ {1, 2},
agent i’s performance, xi,t ∈ ℜ, is the sum of three elements: the agent’s time-invariant

ability ai, multiplied by a stage-specific weight λt > 0; the agent’s private choice of effort

ei,t ≥ 0; and a time-varying random component ϵi,t ∈ ℜ.9 That is,

xi,t ≡ λtai + ei,t + ϵi,t. (1)

Variation in λt across stages accounts for potential differences in the impact of ability

on performance. This is especially relevant when agents’ task changes over time, for

instance, because firms’ choose first assignments for their managers that are particularly

informative about their abilities, as argued by Pastorino (2024). We assume that the

principal can identify the agent with the higher performance xi,1 as the winner of the

first stage, with ties broken randomly. In the second stage, the principal may assign a

bias β ∈ ℜ to the winner of the first stage. Having won the first stage, agent i is then

identified as the winner of the second stage if xi,2 + β > xj,2.

The principal’s objective is to choose the size of the bias β to maximize his payoff

Π. Given our assumptions, this objective is equivalent to maximizing selective efficiency,

S(β;h), defined as the probability that, conditional on agents differing in their abilities,

the more able agent becomes selected. When bias is chosen optimally, selecting the winner

of the second stage maximizes the principal’s objective.10 Note that we assume that the

principal chooses the size of the bias β after observing the agents’ first-stage ranking

rather than committing to it upfront. This assumption is motivated by the observation

that in many instances bias is implemented in the form of favoritism, making the absence

7Our results do not rely on ability having binary support and remain valid when ai = a+ hαi, where
the joint distribution of (αi, αj) ∈ ℜ2 is symmetric with respect to the two components but otherwise
arbitrary.

8Virtually all the employer learning models reviewed in the Introduction assume that workers are
ignorant about their own ability, and hence correspond to the case where q0 = 1

2 .
9By logarithmic transformation, our results remain qualitatively unchanged when performance equals

the product rather than the sum of ability, effort, and noise.
10A randomly assigned first-stage bias does not increase selective efficiency, as long as the size of the

second-stage bias cannot condition on the first-stage winner’s identity, i ∈ {A,B}, which is consistent
with our assumption that agents are indistinguishable for the principal. We thus abstract from the
possibility that bias is assigned in both stages.
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of such commitment the, arguably, more relevant case.11

Agents choose their efforts in each stage to maximize the difference between their

chances to become selected and their effort costs. Effort costs are assumed to be identical

across agents but may differ across stages. More specifically, we let Ct(ei,t) denote agent

i’s effort cost in stage t and assume that Ct is strictly convex. In equilibrium, agents form

correct expectations about the principal’s choice of bias.

Because outcomes depend only on performance differentials, the distribution of the

difference in the individual noise terms, ∆ϵt ≡ ϵA,t − ϵB,t is a key primitive of our model.

We assume that the random variables ∆ϵt are identically and independently distributed

across stages and denote the corresponding support by [−z, z] (where z may be infinite),

the cumulative distribution function by G, and its density by g. We make the following

distributional assumptions:

Assumption 1 (i) g is symmetric around 0; (ii) g is strictly log-concave, i.e., ln g is

strictly concave; (iii) g is twice differentiable on (−z, z); (iv) limy→z L(y) = ∞, where

L(y) ≡ −g′(y)

g(y)
. (2)

The symmetry of g captures the idea that the only source of heterogeneity across agents

is their difference in abilities; it is a weaker assumption than individual shocks, ϵi,t, being

identically and independently distributed across agents. Log-concavity of g is equivalent

to the monotone likelihood ratio property in our setting; it guarantees that, in either

stage, the larger the performance-difference, between agents A and B, ∆xt ≡ xA,t − xB,t,

the higher is the likelihood that A’s ability exceeds B’s, relative to the likelihood that B’s

ability exceeds A’s. The assumption that log-concavity is strict implies that L is strictly

increasing. It is technical and ensures, together with the remaining two assumptions, that

the principal’s problem is well-behaved.

Our main variable of interest is the persistence of outcomes induced by the principal’s

quest for selective efficiency and the agents’ desire to become selected. In particular, our

subsequent analysis determines the principal’s equilibrium choice of bias, β∗(h), and the

agents’ equilibrium efforts to calculate persistence, P (β∗(h);h), defined as the probability

that the winner of the first stage becomes selected after also winning the second stage.

With this objective in mind, it is important to note that the key parameter of our model,

h > 0, captures the degree of agents’ heterogeneity but has a broader interpretation as

the ratio of agents’ heterogeneity to the scale of noise.12 To shed light on the role of

11Most of our results continue to hold when the principal can commit to a bias upfront, that is, before
agents choose their efforts in stage one.

12To see this, introduce a scaling transformation ∆ϵt → σ∆ϵt, with σ > 1, which makes the difference
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initial luck for final outcomes, a large part of our analysis will focus on the limit as h → 0,

where the scale of noise becomes large relative to the agents’ heterogeneity. When, in

this limit, P (β∗(h);h) turns out to be strictly larger than one half, we will say that luck

is made persistent, because when limh→0 P (β∗(h);h) > 1
2
, the first-stage winner has a

greater chance to be selected than the first-stage loser, in spite of the first-stage outcome

being entirely random.

3 Persistence of luck

In this section, we start our analysis by considering the case where agents are equally

uninformed as the principal about their relative abilities. It turns out that, in this case, the

agents’ ability to influence their performance through the exertion of effort has no impact

on the principal’s choice of bias, selective efficiency, nor the persistence of outcomes.

This allows us to develop the basic intuition for the connection between these variables,

before turning our attention to the effects of informed agents’ strategic behavior in the

subsequent section.

The following lemma, which we prove in the Appendix, is critical as it shows that,

in equilibrium, the efforts of uninformed agents cancel each other in the determination of

relative performance.

Lemma 1 (Identical efforts) Suppose that agents are no better informed about their

relative abilities than the principal, i.e. q0 = 1
2
. Then for any anticipated choice of bias by

the principal, there exists a unique pure-strategy equilibrium in efforts. In this equilibrium,

agents choose identical efforts, both in the first stage and in the second stage.

In the proof of Lemma 1, we show that, in the first stage, there exists a pair of identical

efforts that are best responses to each other. We then prove that unequal efforts could

not be best responses, thereby establishing uniqueness of equilibrium. While in the first

stage, equal efforts are a direct consequence of the symmetry imposed by the agents’ prior,

in the second stage the agent’s situation becomes asymmetric, due to the agents’ learning

from their first-stage ranking and the bias imposed by the principal. We show that in

spite of these asymmetries, the agents’ marginal returns to effort in the second stage are

the same because the pivotal realizations of the difference in noise necessary for winning

are identical.

in the noise terms more dispersed: The cdf becomes G(∆ϵt
σ ), the pdf 1

σ g(
∆ϵt
σ ), and the support [−σz, σz].

If the underlying heterogeneity in abilities is H, then G(λ1H
σ ) is the probability that, in equilibrium, the

more able agent wins the first stage. It depends on H and σ only through the heterogeneity-to-noise ratio
h ≡ H

σ .
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Given that, for any level of anticipated bias β ∈ ℜ, equilibrium efforts cancel at

each stage, we can determine the contest’s selective efficiency S(β;h) easily as follows.

Remember that selective efficiency is defined as the probability with which the more able

agent wins the contest’s final stage. Because the first stage is unbiased, the probability

that the more able agent wins the first stage is simply G(λ1h) > 1
2
. In contrast, for

any non-zero value of bias, the probability of winning the second stage depends on the

first-stage outcome. If the more able agent won the first stage, then his chance of winning

the second stage is G(λ2h+β), whereas if he lost the first stage his chance of winning the

second stage is G(λ2h− β). Overall, selective efficiency is thus given by

S(β;h) = G(λ1h)G(λ2h+ β) + [1−G(λ1h)]G(λ2h− β). (3)

Differentiating with respect to β and rearranging leads to the following first-order condi-

tion for the principal’s choice of bias:

G(λ1h)

1−G(λ1h)
=

g(λ2h− β)

g(λ2h+ β)
. (4)

The ratio on the left-hand side is the relative likelihood that a first-stage win identifies

the more able agent rather than the less able one. The higher this likelihood ratio, the

more informative is the first-stage ranking about agents’ relative abilities. The term on

the right-hand side is also a likelihood ratio: It is the relative likelihood that a draw in

the second stage arises, i.e. xi,2 + β = xj,2, when the more able agent is disadvantaged

by the bias compared to when the bias acts in his favor. The higher this likelihood ratio,

the more informative would be the hypothetical observation of a second-stage draw about

the relative ability of the first-stage loser, who managed to achieve a draw despite being

handicapped by the bias. Equation (4) thus shows that optimal bias strikes a balance

between the informativeness of the ordinal stage-one ranking – an unbiased win – and the

informativeness of the marginal stage-two outcome – a biased draw. In equilibrium, bias

is such that, if the principal were to observe a draw in stage two, she would be indifferent

about which agent to select.

Note that, for β = 0, the right-hand side of (4) is equal to one and hence strictly

smaller than the left-hand side. This is because, without bias, a second-stage draw is

uninformative about the agents’ abilities. Moreover, given the strict log-concavity of g,

as the size of the bias increases, a second-stage draw becomes a strictly stronger signal

about the relative ability of the first-stage loser. It thus follows from Assumption 1 that

the first-order condition (4) has a unique solution, β∗(h) > 0, which maximizes selective

efficiency. While these arguments suggest that a positive bias will emerge in equilibrium
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for any level h > 0 of agents’ heterogeneity, it is not clear what happens in the limit as

h → 0. Does bias converge to zero? The following proposition characterizes the value that

equilibrium bias takes as the scale of the noise swamps agents heterogeneity in abilities.

Proposition 1 (Equilibrium bias) Suppose that agents are no better informed about

their relative abilities than the principal, i.e. q0 = 1
2
. The principal’s equilibrium choice of

bias, β∗(h) is strictly positive, even in the limit as noise swamps agents’ ability-differences.

More specifically, β∗
0 ≡ limh→0 β

∗(h) > 0 is given by the unique solution of the equation

2λ1g(0) = λ2L(β
∗
0). (5)

At first sight, the fact that bias remains strictly positive, even in the limit, may seem

counter intuitive, because when h tends to zero, a first-stage win becomes completely

uninformative about relative abilities. However, this reasoning neglects the fact that,

as h tends to zero, a second-stage draw also becomes uninformative, for any level of

bias. Formally, as h tends to zero, both sides of equation (4) approach one. Proposition

1 thus characterizes equilibrium bias in this limit by equating the rates at which the

informativeness of the two stages tend to zero as h gets small. Since L is a strictly

increasing function, L(0) = 0, and the LHS of (5) is positive, the limiting value of bias

must be positive. More intuitively, note the trivial fact that, when bias is zero, achieving

a second-stage draw against a bias is equally likely as achieving a draw with bias in one’s

favor. As this statement holds independently of the ratio of heterogeneity to noise, setting

bias equal to zero nullifies not only the informativeness of a second-stage draw but also the

rate at which this informativeness changes with h. In other words, a strictly positive bias

emerges because unless first-stage losers are disadvantaged relative to first-stage winners

even when ability differences are negligible, the informativeness of a second-stage draw

cannot keep up with the informativeness of a first-stage win when ability differences start

to matter. As depicted in Figure 1, in the limit, bias is chosen to maximizes not the level

of selective efficiency — as selective efficiency becomes independent of bias — but the rate

at which selective efficiency increases with the agents’ heterogeneity. In the limit, optimal

bias thus maximizes the potential gains to selective efficiency from a marginal increase in

agents’ heterogeneity and with bias set to zero these gains can not be fully realized.

Though the logic behind the equilibrium level of bias is clear in the limit, the de-

pendence of β∗(h) on the heterogeneity-to-noise ratio for h > 0 can be complex. This

is because an increment in h increases both sides of equation (4): It raises both the in-

formativeness of a first-stage win and – by log-concavity of g – the informativeness of a

second-stage draw, for any given level of bias. The complex dependence of β∗(h) on h is

11



heterogeneity-to-noise ratio

se
le
ct
iv
e
e
ff
ic
ie
n
cy

�(��
∗; ℎ)

�(0; ℎ)

h

S

0.5

1

�(�
; ℎ)

�(�

; ℎ)

Figure 1: Selective efficiency. The figure depicts selective efficiency S as a function of
agents’ heterogeneity h for different values of bias. β∗

0 > 0 maximizes the slope of S at
h = 0. When bias is zero or too small (β′ < β∗

0) or when bias is too large (β′′ >> β∗
0) the

potential gains in selective efficiency from a marginal increase in heterogeneity are not
fully realized.

illustrated in Figure 2. The left-hand panel plots the density functions for the family of

exponential power distributions with mean zero and shape parameter α > 1.13 The right-

hand panel in Figure 2 plots the equilibrium bias β∗(h) as a function of h, for λ1 = λ2 = 1.

Despite the myriad possibilities illustrated, we see that, as suggested by Proposition 1,

equilibrium bias remains positive even as h gets small for all members of the family.

Our results about the optimal use of bias for selection have implications for our under-

13 These density functions are given by g(∆ϵt;α) =
α

2Γ( 1
α )

exp(−|∆ϵt|α), and for all α > 1, they satisfy

Assumption 1. For α = 2, g(∆ϵt;α) is a normal distribution with variance 1
2 ; as α → ∞, g(∆ϵt;α)

approaches a uniform distribution with support [−1, 1]; and as α → 1, g(∆ϵt;α) approaches a Laplace
distribution with scale parameter 1. At α = 1, Assumption 1 is violated because the Laplace density is
not differentiable at 0.
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Figure 2: Example distributions of noise and equilibrium bias. The left-hand
panel depicts the density functions when noise follows an exponential power distributions
with mean zero and shape parameter α ∈ {1.5, 2, 3, 4, 7}. The right-hand panel plots
the corresponding equilibrium bias, as h varies, assuming that the impact of ability on
performance is time-invariant, i.e. λ1 = λ2 = 1.

standing of the relevance of luck for the determination of economic outcomes. According

to meritocratic principles, the allocation of resources and decision-making power should

be attributable to merit — a combination of ability and effort — rather than luck. In

light of this principle, an important question to ask, is how institutions and organizational

practices shape the relation between performance and outcomes. A straight forward but

important implication of the introduction of bias is that it makes initial performance

have a more persistent effect on final selection. To see this, note that given the princi-

pal’s equilibrium choice of bias, β∗(h), the persistence of the selection process, defined as

the probability with which the first-stage winner becomes selected in the second stage, is

given by

P (β∗(h);h) = G(λ1h)G(λ2h+ β∗(h)) + [1−G(λ1h)][1−G(λ2h− β∗(h)]. (6)

Certainly, initial performance has a persistent effect on final selection even in the absence

of bias, i.e. P (0;h) > 1
2
, because agents’ ability-differential, h > 0, is time-invariant,

making the first-stage winner more likely to also win the second stage. However, in the

limit, as h → 0, persistence vanishes unless it is induced “artificially” through the use of
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bias, i.e.

P0 ≡ lim
h→0

P (β∗(h);h) = G(β∗
0), (7)

and P0 > 1
2
, if and only if the limiting value of bias β∗

0 is strictly positive. Hence, a

direct implication of Proposition 1 is that luck is made persistent. Also note that it

follows from (5) and the strict monotonicity of L that, in spite of ability having only

negligible impact on performance in the limit, a larger bias is employed and luck is thus

made even more persistent when the agents’ first-stage performance is relatively more

sensitive to ability than second-stage performance, i.e. when λ1 > λ2. According to

recent evidence, firms show a tendency to allocate to newly hired workers those tasks

that are particularly informative about their abilities (Pastorino, 2024). In light of this

empirical fact, our results thus indicate that making luck persistent is especially relevant

for a firm’s “selection of the best” when workers’ abilities are judged on the basis of a

series of heterogeneous tasks.

Finally, because persistence in (6) is increasing in both variables, the fact that, as seen

in Figure 2, equilibrium bias β∗(h) can be decreasing suggests that, overall, persistence

could also be decreasing in h. This can be seen in Figure 3 for the case α = 7, where the

indirect effect of a decrease in bias is indeed strong enough to overcome the direct posi-

tive effect of an increase in heterogeneity, leading to lower levels of persistence for larger

values of agents’ heterogeneity. This means that the optimal use of bias might induce

initial outcomes to have more long-lasting effects in spite of performance being less at-

tributable to agents’ abilities. Contrasted with meritocratic principles, these observations

are noteworthy and we thus summarize them formally in the following:

Corollary 1 (Persistence) When bias is set to maximize selective efficiency, luck is

made persistent, i.e. P0 >
1
2
, and even more so when early performance is relatively more

sensitive to ability, i.e. P0 is strictly increasing in λ1

λ2
. Moreover, initial performance

can be induced to have greater impact on final selection in situations where performance-

differences are less attributable to ability-differentials, i.e. there exist noise distributions

g and ranges of h for which P (β∗(h);h) is decreasing in h.

Corollary 1 shows that two apparent violations of meritocratic principles can be rational-

ized by the very fact that organizations aim to optimize the allocation of resources to the

most gifted. Part one shows that making luck persistent, that is, biasing selection in favor

of early performers even when initial success is entirely due to luck, turns out to be a

necessary feature of selective efficiency. Similarly, part two shows that the use of bias for

selection can make final success less correlated with initial performance in settings where
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Figure 3: Equilibrium persistence. The figure plots the likelihood P (β∗(h);h) that
winning the initial stage results in becoming ultimately selected, in dependence of the
ratio h of agents’ heterogeneity to noise. It is assumed that ability has identical impact
on performance in all stages, i.e. λ1 = λ2 = 1, and that noise follows an exponential
power distributions with mean 0 and shape parameter α ∈ {1.5, 2, 3, 4, 7}.

performance differentials are more attributable to agents’ ability-differences. According

to our analysis, neither of these features should be considered as an abandonment of mer-

itocratic principles but is, in fact, a direct consequence of the objective of “selecting the

best”.

4 Strategic behavior of informed agents

Our main model shares with the literature on organizational learning (e.g. Gibbons and

Waldman, 2006; Lange, 2007; Pastorino, 2024) the assumption that agents are equally un-

informed about their relative abilities as the principle. While the model captures agents’

learning, agents learn no faster than the organization. But what if agents have an infor-

mational advantage relative to the principal, right from the start? For example, workers

might know each other from college or might have shared experiences with previous em-

ployers, allowing them to judge their relative abilities. While with uninformed agents,

effort choices had no impact on the principal’s learning, because, in equilibrium, efforts

cancelled each other in the determination of agents’ relative performance, when agents

are informed, their efforts may no longer be identical. In this section, we determine how

informed agents’ strategic behavior impacts organizational learning.
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Our main concern is that, because effort and ability are substitutes in the agents’

performance function, the agent thought less likely to be the most able might use the op-

portunity to make up for his disadvantage by exerting higher effort. If this was the case,

small ability differences might be overcome by effort differentials rendering early perfor-

mance uninformative about agents’ abilities not only in the limit when ability differences

vanish but also off the limit when ability differences are small. As a consequence, our

main result about the relevance of luck for selection would be an artifact of the agents’

ignorance of their relative abilities. In this section, we show that, on the contrary, in-

formed agents’ strategic behavior does not mitigate but reinforces agents’ heterogeneity,

requiring luck to be made even more persistent than when agents are ignorant of their

relative abilities. The following lemma represents the crucial step in our argument:

Lemma 2 (Effort differentials) Suppose that agents are better informed about their

relative abilities than the principal, i.e. q0 > 1
2
. Then for any anticipated choice of bias

β > 0, agents choose identical efforts in the second stage but in the first stage, the agent

thought more likely to be the one with the higher ability exerts a strictly larger effort than

his rival.

Let us first explain the intuition for Lemma 2 before discussing its implications for the

principal’s choice of bias and the resulting persistence of luck. Using the same arguments

as before, it is easy to see that, in the second stage, agents exert identical efforts. However,

unlike in the case where agents are uninformed, the level of effort that both agents exert in

the second stage and hence their effort costs now depend on the identity of the first-stage

winner. To see this, suppose, for simplicity, that q0 = 1, so that agent A is known to be

the more able agent with certainty. Remember that the principal is aware of the agents’

knowledge but cannot distinguish agent A from agent B. If agent A wins the first stage

then bias will reinforce the agents’ ability difference, thereby reducing the likelihood of the

pivotal realization of noise ∆ϵ2 determining second-stage efforts via C ′
2(e

∗
A,2) = g(h+β) =

C ′
2(e

∗
B,2). Conversely, if agent A loses the first stage, then bias will mitigate the agents’

ability difference, leading to an increase in the likelihood of the pivotal realization of ∆ϵ2

and second-stage efforts are determined via C ′
2(e

∗
A,2) = g(h − β) = C ′

2(e
∗
B,2) . Because

g(h + β) < g(h − β) by log-concavity of g, agent A faces lower second-stage effort costs

after winning the first stage than after losing, i.e. A has a “cost-saving incentive” to

win the first stage. For agent B the argument is reversed because bias mitigates agents’

heterogeneity when B wins but reinforces it when B loses, i.e. agent B has a “cost-saving

disincentive”. Since the “rewards” of winning the first stage, arising from the increased

probability of becoming selected, are the same for both agents, agent A’s overall incentive

to exert effort in the first stage is thus greater than agent B’s.
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Lemma 2 shows that, in equilibrium, informed agents’ efforts cancel in the final stage

of selection but reinforce the agents’ ability differential in the initial stage. Let

∆e∗1(β, h, q
0) ≡ e∗A,1(β, h, q

0)− e∗B,1(β, h, q
0) (8)

denote the agents’ equilibrium effort-differential in the first-stage when agents anticipate

bias β, have prior q0 about their relative abilities, and their degree of potential hetero-

geneity is h. The following result extends Proposition 1 to the case of informed agents

under the additional assumption that effort costs are quadratic.

Proposition 2 (Bias with informed agents) Suppose that Ct(ei,t) = e2i,t for all i, t,

and that agents are better informed about their relative abilities than the principal, i.e.

q0 > 1
2
. In the limit, as noise swamps ability-differences, equilibrium bias β∗

0(q
0) ≡

limh→0 β
∗(h, q0) is strictly positive, strictly increasing in q0, and approaches the unique

solution to:

2g(0)

[
λ1 + (2q0 − 1)

∂∆e1(β
∗
0(q

0), 0, q0)

∂h

]
= λ2L(β

∗
0(q

0)). (9)

Proposition 2 shows that our insights about the optimal use of bias for selection are quali-

tatively unchanged in the presence of informational asymmetries. When agents are better

informed than the principal, the resulting effort-differential makes first-stage performance

a more informative signal about agents’ relative abilities. As a consequence, the prin-

cipal will increase the informativeness of the agents’ second-stage ranking by employing

an even larger bias than in the case where agents are equally uninformed as the princi-

pal. Proposition 2 shows that bias remains positive in the limit, even when agents are

informed about their relative abilities and can overcome potential ability disadvantages

through the exertion of effort. In addition to establishing robustness, the comparative

statics contained in Proposition 2 offer further insights about the relevance of luck for

selection which we formulate as the following:

Corollary 2 (Persistence amplified) When informed agents act strategically to maxi-

mize their chance to become selected, luck is made even more persistent than when agents

are uninformed about their relative abilities or unable to influence their performance

through effort, i.e. P0(q
0) = G(β∗

0(q
0)) > P0 for all q0 > 1

2
. The persistence of luck

is amplified by the principal’s informational disadvantage, i.e. P0(q
0) is increasing.

Corollary 2 emphasizes that making luck persistent can be understood as an organiza-

tional response to an informational friction. Organizations employ bias for selection even

in extremely noisy environments not only because they know little about agents’ relative
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abilities but also because they know less than agents themselves. Moreover, because with

uninformed agents, i.e. for q0 = 1
2
, the persistence of luck takes the same value P0 as

in the hypothetical situation where agents cannot influence their performance through

effort, Corollary 2 relates our theory to an ongoing discussion of what constitutes “merit”

(Sen, 2000). Inherited talents, acquired abilities, and costly noble acts all serve as po-

tential candidates to be combined in this single variable, endowing its possessor with a

justification for decision-making power or economic prosperity. Our theory allows us to

distinguish between the case where performance – or merit – is given by the (noisy) sum

of an agent’s ability and effort and the case where only ability matters. According to our

analysis in Section 3, whether or not effort is included in the definition of merit is irrele-

vant for the outcome of organizational selection when agents are uninformed about their

relative abilities. However, Proposition 2 and its corollary suggest that with informed

agents, organizational selection becomes more biased when merit depends not only on

ability but also on efforts. Perhaps surprisingly, when viewed from this angle, our theory

thus predicts a greater relevance of luck for selection in situations where agents carry a

greater “responsability” for their performance.

5 Performance–measurement

Our theory has shown that an organization’s “selection of the best” requires luck to

be made persistent and that this need becomes more pressing when its agents are in-

formed about their relative abilities and can employ costly efforts to manipulate their

chance to become selected. The resulting correlation between the initial and the final

outcomes of the dynamic selection process has its origin in the principal’s limitation to

noisy performance–measurement. As performance–measurement is central to our theory

of persistence, in this section we consider how the organization’s use of bias varies with the

precise way in which performance is measured. For the analysis below and for the remain-

der of this article, we abstract from the strategic behavior of informed agents considered

in Section 4, i.e. we resort to the case where q0 = 1
2
.

Our model has assumed that performance–measurement is ordinal rather than car-

dinal, in that the principal can observe only the ranking of the agents’ performances, at

each stage. Ordinal performance–measurement is prevalent towards the top of an organi-

zation’s hierarchy, due to the difficulty to quantify performance of increasingly complex

tasks (Lazear, 2018). This means that in situations where selection matters most, ordinal

performance–measurement is, arguably, the most relevant case to consider. In this section,

we consider the counter-factual situation where the principal has access to performance–
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information that is cardinal. We are especially interested in understanding how a switch

from cardinal to ordinal performance–measurement affects an organization’s use of bias

in the limit where performance becomes approximately random. Given the erosion of

cardinal performance–measurement towards the top of an organization’s hierarchy, this

question is equivalent to asking whether luck can be expected to play a larger or a smaller

role for selection in positions with higher ranks.

When performance–measurement is cardinal, the principal can condition her choice of

bias on the first-stage margin of victory |∆x1| ≡ |xA,1−xB,1|. Intuitively, a larger margin

of victory is more informative about the agents’ relative abilities and thus requires the

granting of a larger bias. The equilibrium bias, β∗(h), when performance measurement

is only ordinal, can be thought of, loosely, as a form of average of the optimal cardinal

biases βc(|∆x1|, h) as the margin of victory |∆x1| varies. Proposition 3 below, makes this

intuition precise for the limiting case where the heterogeneity-to-noise ratio h tends to

zero.

Proposition 3 (Bias with cardinal information) Let q0 = 1
2
. When performance–

information is cardinal rather than ordinal, the following features of equilibrium bias hold

in the limit h → 0 as noise swamps ability-differences:

(i) Cardinal bias varies with the first-stage margin of victory and is strictly positive in

expectation:

lim
h→0

E[βc(|∆x1|, h)] > 0. (10)

(ii) Ordinal bias equals a form of “average” cardinal bias in the sense that

L(β∗
0) = E[L(βc

0(|∆x1|))], (11)

where βc
0(|∆x1|) ≡ limh→0 β

c, (|∆x1|, h), and this average becomes exact, i.e. β∗
0 =

E[βc
0(|∆x1|)], when noise is normal.

Although Proposition 3 derives the parallels between ordinal and cardinal bias for arbi-

trary λ1, λ2 > 0, the properties of cardinal bias become particularly transparent when

performance in the two stages is equally sensitive to ability, that is, for λ1 = λ2. It is

then optimal for the principal to select the agent with the higher aggregate performance,

xi,1+xi,2, and this simple selection rule can be implemented by biasing the agents’ second-

stage performance in favor of the first-stage winner by exactly |∆x1|, the first-stage margin

of victory. Hence, in the equilibrium with cardinal information and λ1 = λ2, bias is

βc(|∆x1|, h) = |∆x1|, ∀|∆x1|, h. (12)
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For λ1 = λ2, it is thus straight forward to understand why, as the heterogeneity-to-noise

ratio h goes to zero, the limiting value of bias βc
0(|∆x1|) is positive on average. This

is because, given (12), expected cardinal bias is just the expected first-stage margin of

victory, which, as h → 0, approaches E[|∆ϵ1|] > 0.

A direct implication of Proposition 3 is that with cardinal performance–information,

luck is made persistent on average, i.e.

P c
0 ≡ lim

h→0
E[P (βc(|∆x1|, h), h)] = lim

h→0
E[G(βc(|∆x1|, h)] >

1

2
. (13)

A question that arises naturally is: Under which kind of performance–information do or-

ganizations induce the greater persistence of luck (on average)? To approach this question

it is useful to compare the levels of persistence that ordinal bias induces for the examples

depicted in Figure 3 with the case of cardinal performance–measurement. For the case

λ1 = λ2 depicted in the figure, the expected persistence of luck under cardinal information

can be determined easily as follows. Note that the first-stage winner i becomes selected

as the agent with the highest aggregate performance, when one of two events occur; (1)

when he performs better also in the second stage, i.e. xi,2 > xj,2; or (2) when his rival j

performs better but with a smaller margin of victory, i.e. xj,2 > xi,2 but |∆x2| < |∆x1|.
In the limit h → 0, these two events occur with probability 1

2
and 1

4
, respectively, and the

expected persistence of luck under cardinal performance–measurement is thus given by

P c
0 = P(∆x1 +∆x2 ≥ 0|∆x1 ≥ 0) =

1

2
+

1

4
=

3

4
. (14)

Note from Figure 3 that the persistence of luck under ordinal performance–measurement

is larger than 3
4
for all values of α depicted. For α = 2 this is not surprising, because, as

shown by Proposition 3, ordinal bias is given by the expectation of cardinal bias when

noise is normal and persistence in (13) is a concave function of bias.14 In fact, combining

this insight with equation (11), a sufficient condition for luck to be more persistent under

ordinal bias than under cardinal bias is that the function L(.) is convex.15 We summarize

these insights in the following:

Corollary 3 (Persistence with cardinal information) Suppose that L(.) is convex

which holds, for instance, if noise is “sufficiently normal”. When the organization ob-

14Because the log-concavity of g implies that g is unimodal and because g is assumed to be symmetric
around zero, in the positive domain, g has to be decreasing and hence G has to be concave.

15To see that L convex is not necessary note that for the exponential power family of distributions in
(13), L is convex if and only if α ≥ 2 but persistence of luck is larger under ordinal than under cardinal
information for all α > 1.38. The case where L is convex corresponds to densities g̃ that are more
log-concave than normal, i.e. where ln g̃ is a concave transform of ln g when g is normal.
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serves cardinal performance–information it will induce luck to be less persistent on av-

erage than when performance-measurement is only ordinal, i.e. P c
0 = E[G(βc

0(|∆x1|)] <
G(β∗

0) = P ∗
0 .

Lazear (2000) argues that due to the difficulty to quantify the performance of managers,

firms employ incentive contracts that rely on cardinal information, such as piece rates, less

frequently for positions at higher ranks and instead use ordinal comparisons to provide

incentives. Corollary 3 shows that when organizations observe cardinal performance–

information at low ranks whereas performance-information at high ranks is only ordinal,

organizations will induce luck to have more persistent effects on selection for positions

towards the top of the hierarchy. Surprisingly luck is induced to play a more important

role for those positions where the selection of the best candidate is most critical. In

particular, our analysis in this section therefore rationalizes the relevance of luck for the

selection of an organization’s leadership, where Π(a) is, arguably, most sensitive to ability

differentials and the selection of the “right” or the “wrong” agent can lead to substantial

gains or losses.16

6 Discrimination and cumulative disadvantage

Inlcude new section here.

7 Conclusion

When the careers of professional hockey players or CEOs are kick-started by the proximity

of their birthday to a cut-off or when hedge funds or venture capitalists persistently

outperform the market following a fortunate initial investment, luck seems to play an

unjustified role in the selection of the most gifted. Such findings and related anecdotes

play into the hands of recent critics of a meritocratic worldview (e.g. Piketty, 2014;

Sandel, 2020), which, in spite of forming the basis of modern democratic societies, is

claimed to be a myth, used as a justification for their exorbitant degrees of economic

and social inequality. The main contribution of this paper is to show that making initial

16For instance, the passing of the UK premiership from Neville Chamberlain to Winston Churchill,
rather than to Lord Halifax, during the early years of Word War II brought to an end the British
policy of appeasement and has been credited as a major contributor to the Allied victory (Roberts,
2019). Conversely, the infamous decline of Kodak has been attributed to the appointment of CEO Kay
Whitmore, who was criticized for lacking the visionary foresight of his rival, Phil Samper, concerning
the emergence of digital photography. See “How mediocre managers ruined Kodak” available online at
https://www.hrmagazine.co.uk/content/features/how-mediocre-managers-ruined-kodak/.
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luck to have a persistent effect on selection is consistent with – if not a necessary feature

of – a society aiming to allocate resources and decision-making power to the most able

individuals.

Our theory is stylized but capable of identifying a basic mechanism rationalizing the

persistence of initial luck as an equilibrium outcome of the strategic interaction between

an organization aiming to maximize selective efficiency and a group of heterogeneous

agents capable of influencing their likelihood of becoming selected through costly efforts.

We have identified the scenarios where the role of initial luck can be expected to be

most amplified. This happens when agents are informed about their relative abilities and

the organization is restricted to use ordinal rather than cardinal performance information.

Both conditions seem more likely to be met towards the top of an organizations hierarchy,

which means that we have identified luck as a determinant of selection where, arguably,

selection matters most.

Appendix

Proof of Lemma 1

Use superscripts W and L to distinguish the cases where agent A won and lost the first

stage. Define ∆e1 = eA,1 − eB,1, ∆eW2 = eWA,2 − eWB,2, and ∆eL2 = eLA,2 − eLB,2. Let q
W
∆a(∆e1)

and qL∆a(∆e1) denote the posterior probabilities that aA− aB = ∆a, given ∆e1, and given

that A won or lost the first stage, respectively. When there is no risk of confusion, we

suppress the dependence of the agents’ posteriors on ∆e1.

Step 1. We first show that agents exert identical effort in the second stage and that

this holds independently of ∆e1 in spite of the influence of first-stage efforts on posteriors.

In case W , A’s and B’s first-order conditions determining second-stage efforts are:

C ′
2(e

W
A,2) = qWh g

(
h+ β +∆eW2

)
+ qW0 g

(
β +∆eW2

)
+ qW−hg

(
−h+ β +∆eW2

)
(15)

C ′
2(e

W
B,2) = qWh g

(
−h− β −∆eW2

)
+ qW0 g

(
−β −∆eW2

)
+ qW−hg

(
h− β −∆eW2

)
.(16)

By the symmetry of g, the marginal returns to effort are identical, so e∗WA,2 = e∗WB,2. An

analogous argument shows e∗LA,2 = e∗LB,2.

Step 2. In this step, we determine how the agents identical second-stage efforts vary

with a potential first-stage effort-differential. In particular, we show that if ∆e1 > 0, then

e∗WA,2 > e∗LA,2. Denote by q0∆a the prior probability that aA − aB = ∆a ∈ {−h, 0, h} and
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note that because aA and aB are identically distributed,

q0−h = q0h. (17)

From this equality and Assumption 1(i) it immediately follows that, if ∆e1 = 0, then

e∗WA,2 = e∗LA,2. To show that e∗WA,2 > e∗LA,2 if ∆e1 > 0, note that given e∗WA,2 = e∗WB,2 and

e∗LA,2 = e∗LB,2, e
∗W
A,2 and e∗LA,2 have to satisfy

C ′
2(e

∗W
A,2) = qWh (∆e1)g(h+ β) + qW0 (∆e1)g(β) + qW−h(∆e1)g(−h+ β) (18)

C ′
2(e

∗L
A,2) = qLh (∆e1)g(h− β) + qL0 (∆e1)g(−β) + qL−h(∆e1)g(−h− β). (19)

Given Assumption 1(i), it follows that

C ′
2(e

∗W
A,2)− C ′

2(e
∗L
A,2) = [qWh (∆e1)− qL−h(∆e1)]g(h+ β) (20)

+ [qW−h(∆e1)− qLh (∆e1)]g(−h+ β) + [qW0 (∆e1)− qL0 (∆e1)]g(β).

To complete Step 2, we show that (20) is strictly positive which, combined with the

convexity of C2, implies that e∗WA,2 > e∗LA,2. Assumption 1(ii) implies that, for ∆e1 > 0,

qWh (∆e1)− qL−h(∆e1) < 0 and qW−h(∆e1)− qLh (∆e1) > 0. (21)

We now show that for ∆e1 > 0, qW0 (∆e1)− qL0 (∆e1) > 0. It follows from Assumption 1(i)

and condition (17) that qW0 (∆e1) > qL0 (∆e1) if and only if

qW0 (∆e1) =
q00G(∆e1)

q0h[(G(h+∆e1) +G(−h+∆e1)] + q00G(∆e1)
(22)

>
q00G(−∆e1)

q0h[(G(h−∆e1) +G(−h−∆e1)] + q00G(−∆e1)
= qW0 (−∆e1) (23)

which is equivalent to

2G(∆e1) > G(h+∆e1) +G(−h+∆e1). (24)

Assumptions 1(i) and 1(ii) imply (a) strict convexity of G on [−z, 0] and (b) strict con-

cavity of G on [0, z]. If −h+∆e1 ≥ 0, (24) follows from (b). Otherwise (a) implies

G(−h+∆e1) <

(
2∆e1

h+∆e1

)
G(0) +

(
h−∆e1
h+∆e1

)
G(−h−∆e1), (25)
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which in turn implies that

G(h+∆e1) +G(−h+∆e1) <

(
2h

h+∆e1

)
G(0) +

(
2∆e1

h+∆e1

)
G(h+∆e1). (26)

Using G(−h−∆e1)+G(h+∆e1) = 1 = 2G(0), this last term is smaller than 2G(∆e1) by

(b). This proves that qW0 (∆e1) − qL0 (∆e1) > 0. Returning to (20), Assumption 1(i) and

1(ii) imply that g(h + β) < g(β) and g(h + β) < g(−h + β). Also, the three differences

in posteriors in square brackets sum to 0. Hence the inequality qW0 (∆e1)− qL0 (∆e1) > 0,

combined with those in (21), implies that (20) is strictly positive.

Step 3. In this final step, we argue that for ∆e1 > 0, agent B would have a stronger

incentive to exert first-stage effort than agent A which leads to a contradiction, allowing

us to conclude that ∆e∗1 = 0. Consider the overall utility of agent A:

q0h{G (h+∆e1)
[
G
(
h+ β +∆e∗W2

)
− C2

(
e∗WA,2

)]
(27)

+ [1−G (h+∆e1)]
[
G
(
h− β +∆e∗L2

)
− C2

(
e∗LA,2

)]
}

+ q00{G (∆e1)
[
G
(
β +∆e∗W2

)
− C2

(
e∗WA,2

)]
+ [1−G (∆e1)]

[
G
(
−β +∆e∗L2

)
− C2

(
e∗LA,2

)]
}

+ q0−h{G (−h+∆e1)
[
G
(
−h+ β +∆e∗W2

)
− C2

(
e∗WA,2

)]
+ [1−G (−h+∆e1)]

[
G
(
−h− β +∆e∗L2

)
− C2

(
e∗LA,2

)]
} − C1 (eA,1) .

A change in eA,1 does not affect e∗WB,2, e
∗L
B,2, or β, because it is unobservable, and the local

effect via the induced changes in e∗WA,2 and e∗LA,2 is zero by the envelope theorem. Using

∆e∗W2 = ∆e∗L2 = 0, Assumption 1(i), and condition (17), the marginal benefit of eA,1

simplifies to

q0h [g (h+∆e1) + g (−h+∆e1)]
{
G (h+ β)− C2

(
e∗WA,2

)
−G (h− β) + C2

(
e∗LA,2

)}
+ q00g(∆e1){G(β)− C2

(
e∗WA,2

)
−G (−β) + C2

(
e∗LA,2

)
} (28)

Analogously, for agent B the marginal benefit of eB,1 becomes

q0h [g (h−∆e1) + g (−h−∆e1)]
{
G (h+ β)− C2

(
e∗LB,2

)
−G (h− β) + C2

(
e∗WB,2

)}
+ q00g(∆e1){G(β)− C2

(
e∗LB,2

)
−G (−β) + C2

(
e∗WB,2

)
}. (29)

By Assumption 1(i) and Step 1, the difference between (28) and (29) has the sign of

C2(e
∗L
A,2)− C2(e

∗W
A,2), which by Step 2 is negative when eA,1 − eB,1 > 0. But eA,1 − eB,1 >

0 implies C ′
1(eA,1) − C ′

1(eB,1) > 0, so such efforts cannot be optimal for both agents.

Analogously, eA,1 < eB,1 would also yield a contradiction. Hence, equilibrium requires
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equal first-stage efforts: e∗A,1 = e∗B,1. These are unique since with ∆e1 = 0, (28) and (29)

are independent of the common level of e1.

Proof of Proposition 1

Equilibrium bias maximizes selective efficiency, S(β;h), which for q0 =
1
2
by Lemma 1 is

given by (3). We use sub-indices to denote partial derivatives. For any h > 0, Assumption

1 ensures that the first-order condition Sβ(β;h) = 0 uniquely determines the optimal bias

β∗(h):

Sβ(β
∗(h);h) = G (λ1h) g (λ2h+ β∗(h))− [1−G (λ1h)] g (λ2h− β∗(h)) = 0.

To see that β∗(h) > 0 for all h > 0 note that G(λ1h) > 1 − G(λ1h). However,

limh→0 Sβ(β, h) = 0 ∀β. Characterizing β∗
0 ≡ limh→0 β

∗(h) thus requires totally differ-

entiating Sβ(β
∗(h);h) with respect to h, setting it equal to 0, and letting h → 0. Total

differentiation yields

d

dh
Sβ(β

∗(h);h) = Sβh(β
∗(h);h) + Sββ(β

∗(h);h)
∂β∗(h)

∂h
, (30)

where limh→0 Sββ(β;h) = 0 ∀β (since limh→0 Sβ(β;h) = 0 ∀β). Hence, (30) and Assump-

tion 1(i) imply that β∗
0 solves

lim
h→0

Sβh(β
∗(h);h) = Sβh(β

∗
0 , 0) = 2λ1g(0)g(β

∗
0) + λ2g

′(β∗
0) = 0, (31)

which gives (5). Since Assumptions 1(i) and 1(iii) guarantee that L(0) = 0 and that L is

strictly increasing, it follows that β∗
0 > 0.

Proof of Lemma 2 Proof of Proposition 2
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Proof of Proposition 3

To abbreviate notation we let k = |∆x1| ≥ 0 denote the observed first-stage margin of

victory.

Part (i) The principal chooses β to maximize Sc(β, k, h), the probability of selecting

the more able agent, conditional on agents’ abilities being different. Conditional on abili-

ties being different, the probability of margin of victory k is g(k−λ1h) when the stronger

agent wins and g(k + λ1h) when the weaker agent wins. Hence

Sc(β, k;h) = g(k − λ1h)G(λ2h+ β) + g(k + λ1h)G(λ2h− β).

The corresponding first-order condition is

Sc
β(β, k;h) = g(k − λ1h)g(λ2h+ β)− g(k + λ1h)g(λ2h− β) = 0 (32)

which, by Assumption 1, uniquely determines the optimal cardinal bias βc(k, h) as a

strictly increasing function of k, equal to zero for k = 0. Since limh→0 S
c
β(β, k;h) = 0 ∀β, k,

characterizing βc
0(k) ≡ limh→0 β

c(k, h) requires totally differentiating Sc
β(β

c(k, h), k;h)

with respect to h, setting it equal to zero, and letting h → 0. Steps paralleling the proof

of Proposition 1(i) show that βc
0(k) solves limh→0 S

c
βh(β, k;h) = 0, which yields

L(βc
0(k)) =

λ1

λ2

L(k). (33)

By Assumption 1, L(0) = 0 and L(k) > 0 ∀k > 0. Hence, βc
0(k) > 0 ∀k > 0. To compute

E[βc(k, h)], remember from the proof of Lemma 1 that the prior probabilities q0∆a that

aA−aB = ∆a ∈ {−h, 0, h} satisfy q0−h = q0h. The unconditional density of k on its support

[0, z + λ1h] is thus given by

2q0hg(k − λ1h) + 2q0hg(k + λ1h) + 2q00g(k). (34)

Hence

E[βc(k, h)] = 2

∫ z+λ1h

0

βc(k, h)
[
q0hg(k − λ1h) + q0hg(k + λ1h) + q00g(k)

]
dk

= 2q0h

∫ z

−λ1h

βc(v + λ1h, h)g(v)dv + 2q0h

∫ z+2λ1h

λ1h

βc(v − λ1h, h)g(v)dv

+ 2q00

∫ z

0

βc(k, h)g(k)dk, (35)
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Since 2q0h + q00 = 1,

lim
h→0

E[βc(k, h)] = 2

∫ z

0

βc
0(v)g(v)dv.

Since βc
0(k) > 0 ∀k > 0, limh→0 E[βc(k, h)] > 0.

Part (ii) Given (5) and (33), we need only show that E[L(k)] = 2g(0). As h → 0,

(34) converges to 2g(k) on support [0, z]. Hence

E[L(k)] =
∫ z

0

L(k)2g(k)dk = −2

∫ z

0

g′(k)dk = 2g(0),

using g(z) = 0, which is implied by Assumption 1(iii).
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