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We study dynamic games in which the set of all possible payoff-relevant parameters is not
commonly known—thus covering usual economic scenarios that entail discrepancies about the
forms in which asymmetric information can take place, or misjudgments about the information
that own choices may reveal to others. Within a novel framework that allows for this flexibility,
we: (1) characterize the robustness of different dynamic variants of rationalizability according
to their reliance on observed behavior for belief-updating: while those that may neglect unex-
pected observed moves are robust (weak and backward rationalizability), that which exploits
them is not (strong rationalizability); (2) identify sufficient conditions on private information
for the robustness of strong rationalizability, and establish the latter’s genericity by showing
that these conditions hold everywhere in the universal type space, except in a meager set of
“knife-edge” cases; (3) unveil an impossibility theorem that confronts the economic analyst
with the following dilemma: either excluding payoff-states in ad hoc fashion, or giving up on
sharpening predictions via dynamic criteria; (4) show that the predictions that can be uniquely
selected by weak rationalizability when small noise about beliefs and information à la Weinstein
and Yildiz (2007) is introduced coincide, exactly, with those of strong rationalizability.
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1 Introduction

In the theory of games with incomplete information, a central tool in Economics, the
rationale behind strategic behavior can crucially hinge on “knife-edge” common knowledge
assumptions,1 so that arbitrarily small misspecifications of the latter can suffice to render
predictions invalid—not infrequently, to the extent of overturning the economic conclusions

∗November 13, 2022 (latest version). Contact: evan.piermont@rhul.ac.uk and p.zuazogarin@hse.ru
1 This is deftly exhibited by Rubinstein’s (1989) Email game: Consider a two-player static game with

complete information, where: E0 ≡ “There are two strict Nash equilibria a = (a1, a2) and b = (b1, b2), and
the former Pareto dominates the latter” holds. Notice that, if E1 ≡ “Player 1 believes with high enough
probability that there is payoff-uncertainty and action b2 is strictly dominant for Payer 2” held, then Player
1’s unique possible best-reply would be b1 (the bad equilibrium action); if E2 ≡ “Player 2 is certain of E0

but also believes with high enough probability in E1” held, then b2 would be Player 2’s unique possible
best-reply (to b1, what she would consider to be the unique possible best-reply of Player 1); if E3 ≡ “Player

1
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of the model.2 While this sensitivity calls into questions the solidity of general theoretical
insights, it also provides an avenue towards equilibrium selection, allowing the selection of
equilibria on the basis of their robustness to relaxations of common knowledge assumptions,
for instance, global games techniques.

The question of which predictions remain pertinent when common knowledge assump-
tions are relaxed emerges naturally. There is an extensive literature in game theory and
mechanism design addressing the impact of an player’s misspecified probabilistic beliefs
about individual preferences, modeled, with very limited exception, as her beliefs at the
beginning of the strategic interaction.3 In contrast, misspecifications of a players’ persis-
tent information, manifest in their information-types, have remained virtually unexplored.4

By persistent information, we mean those restrictions on both the values of the payoff-
relevant parameters of the environment, and the information and beliefs of others, that a
player can deem as possible at some stage of a dynamic interaction, even after observing
initially surprising events. Due to the subtlety of modeling such restrictions, it is unsurpris-
ing that specifications of information-types abound with stringent persistent informational
assumptions that, often, pass unnoticed.

For example, in auction settings it is usual to model bidders’ preferences as determined
by a privately known parameter that is uncertain to the rest of participants. However, no
bidder expects another bidder to be uncertain about her own preference and, moreover,
the set of possible pieces of private information that each bidder can hold is commonly
known. Similar observations apply to more general settings that allow for interdependent
preferences: the set of possible profiles of relevant parameters (either privately known
or residual) is commonly known, and with it, so are several other subtler informational
aspects. For instance, whether asymmetric information can take place or not, or the fact
that bidders share a common understanding of how belief-update would take place in a
sequential scenario: if bid bi could only be rationalized on the grounds of a specific subset
of private valuation of bidder i, V ′

i , then a bidder j that observed bi would infer that
i’s private valuation is contained in V ′

i , and update her beliefs accordingly—moreover,
this would also be known in advance by i. Assumptions of this kind are not universally
valid for the representation of real-life economic settings, and this naturally motivates an
interest in better understanding the trade-off between enhanced tractability and aggravated

1 is certain of E0 and of Player 2 being certain of E0, but also believes with high enough probability in E2”
held, then b1 would be Player 1’s unique possible best-reply. . . That is, no matter how much common belief
in the scenario in E0 was approximated (i.e., which Ek held), the good equilibrium actions would never be
played.

2The observation is eloquently synthesized by Chen, Tillio, Faingold and Xiong (2017, pp. 1424–1425),
who recall some well-known examples of this phenomenon: the (in)dependence of private values and the
possibility of full surplus extraction (Myerson, 1981, and Crémer and McLean, 1988), whether the prob-
abilistic assessment of economic fundamentals is common or not and the possibility of commonly known
mutually beneficial trade (Milgrom and Stokey, 1982, and Morris, 1994), and the certainty of acting as a
proposer in bargaining settings and the immediacy of agreement (Rubinstein, 1982, and Yildiz, 2003).

3E.g., Dekel and Fudenberg (1990), Lipman (2003), Weinstein and Yildiz (2007), Dekel, Fudenberg and
Morris (2006), Chen, Di Tillio, Faingold and Xiong (2010), Ely and Pe�ski (2011), Penta (2012), Chen (2012),
Chen, Tillio, Faingold and Xiong (2017), Heifetz and Kets (2018) or Germano, Weinstein and Zuazo-Garin
(2020) for game theory, and Bergemann and Morris (2005, 2009, 2016), Oury and Tercieux (2012), Penta
(2015) or Chen, Mueller-Frank and Pai (2020) for mechanism and information design.

4Exceptions include Penta (2012), on which we expand below, or Evsyukova, Innocenti and Lomys (2021).
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missrepresentation that different specifications of information entail.
Prompted by the above, this paper approaches the problem of robustness from a new

angle by accounting for almost all relaxations of informational assumptions. We introduce
a universal-type space enabling for this flexibility and, within this framework, study the
robustness of different dynamic variants of rationalizability at interim level—i.e., the upper-
hemicontinuity of different correspondences mapping players’ types to subsets of strategies.
We find that disparities in the robustness of different solution concepts can be traced back
to their reliance on observed behavior for updating beliefs after unexpected moves: while
weak and backward rationalizability (the variants which may neglect unexpected moves)
are robust, strong rationalizability (that which exploits them) is not.5 A closer look reveals
that strong rationalizability is generically robust—that is, upper-hemicontinuous in and
open and dense subset of the universal type-space—and furthermore, that the conditions
guaranteeing its robustness refer to absences of ties in payoffs and are, in consequence, eco-
nomically relevant and easy to implement. Next, we show that if each players’ information
about others’ information is always broad enough to permit making sense of every possible
observed behavior (that is, is rich), then the predictions of weak, strong and backward ra-
tionalizability all coincide. We interpret this as an ‘impossibility theorem’ posing a dilemma
between either restricting information in ad hoc fashion, or giving up on sharpening pre-
dictions via dynamic criteria. Finally, we address the validity of equilibrium selections
based on robustness. We present a new dynamic version of Weinstein and Yildiz’s (2007)
‘structure theorem’ showing that strongly rationalizable predictions characterize the set of
weakly rationalizable predictions that can be uniquely selected by perturbing information
and beliefs—in particular, it follows that strongly backward rationalizable predictions back-
ward rationalizable ones. We thus conclude that selection arguments based on perturbations
allow for nontrivial refinements of weak rationalizability.

Getting into further detail, our work builds on Penta’s (2012) pioneering investigation
of the interplay between information and higher-order uncertainty in dynamic games, and
its impact on the robustness of game-theoretic predictions. Our departure from his work
is threefold. First, we do not require players not to have information about other players’
information. Second, we study robustness to perturbations, not arbitrary changes, of infor-
mational assumptions. Third, we do permit (but not require) information to be wrong.6 To

5Weak rationalizability (c.f. Ben Porath, 1997, and Penta, 2012) captures the behavioral implication of
sequential rationality and common initial belief thereof, so that it places no restrictions in beliefs at noninitial
histories beyond update via conditional probability. Backwards rationalizability (c.f. Catonini and Penta,
2022) is a ‘backward induction’ version of rationalizability, so that erratic observed moves are rendered as
uninformative ‘trembles’ and keeps common belief in future sequential rationality (Perea, 2014). Strong
rationalizability (or extensive-form rationalizability in previous literature, e.g., Pearce, 1984) is a forward
induction version of rationalizability that conjectures about future behavior by making sense of observed
choices—via Battigalli’s (1997) ‘best rationalization principle’ (also Battigalli and Siniscalchi, 2003).

6Penta (2012) focuses on payoff-states is of the form Θ = Θ0×
∏

j∈I Θj so that, at each state θ ∈ Θ, each
player i is privately informed of θi and thus considers every state in {θi}×Θ0×

∏
j ̸=i Θj as possible (possibly,

with probability 0). Thus, the information that player i has about other players’ types is always the same,
and independent of her information. While an extension to nonproduct sets of payoff-states is hinted at
(p. 653), this is beyond the focus of that paper. Besides, the latter considers a notion of robustness to
misspecifications of the set of states, model invariance, that requires predictions to be invariant to arbitrary
changes of this set. Instead, we focus on perturbations (possibly at the higher-order) of the set of payoff-
states—what we view as methodologically aligned with the approach to robustness to higher-order beliefs.
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allow for these, our starting point is not an exogenously fixed payoff-information structure
(roughly, a set of states, possibly also describing information-types) that implicitly entails
numerous informational assumptions,7 but instead, a novel type-space that encompasses
every universal type-space built upon every possible payoff-information structure. This is
achieved by, loosely, ‘bundling together’ payoff-information structures and type-spaces by
introducing two minimal tweaks: (1) a set of payoff-states consisting in the set of all possi-
ble profiles of utility-functions from the set of outcomes, a primitive of the model, into the
interval [0, 1] (not an exogenously fixed set whose parameters later serve as arguments for
a utility-function), and (2) considering types whose informational component consists in a
subset of payoff-states and other players’ types (not simply payoff-states).8 This approach
has two conceptual advantages. First, the persistent higher-order beliefs that a type holds
via its informational component are fully encapsulated in the type, without further reference
to any set of states, or payoff-information structure. Hence, the effects of relaxing infor-
mational assumptions can be studied in isolation, by simply focusing on perturbations of
individual types’ information. Second, the interim solution concepts that we study become
type-space invariant; that is, they depend solely on the hierarchy of information and beliefs
encoded in each type, not on the specific type-space that is employed for its representation.
The analysis in our universal type-space is thus without loss of generality.

Within this framework, our examples in Section 2 document the negative—yet hardly
surprising—observation that the predictions of strong rationalizability are not robust. On
the positive side, our first main result (Theorem 1) shows that two standard solution con-
cepts are robust in the whole universal type-space, namely weak and backward rationaliz-
ability. While the second part of the theorem is—to the best our knowledge—fully novel,
the robustness of weak rationalizability reinforces previous insights by Dekel, Fudenberg
and Morris (2006, Theorem 1) and Penta (2012, Proposition 1), who show, respectively,
that weak rationalizability is robust in settings with no private information,9 and to pertur-
bation that do not affect types’ information about others’ types information. In principle,
the disparate robustness properties of weak and backward rationalizability on the one hand,
and strong rationalizability on the other, point towards a potentially more problematic phe-
nomenon: that despite the conceptual appeal of the forward induction reasoning behind
strong rationalizability, the conditions for it to be applied successfully may crucially rely
on knife-edge assumptions that are tremendously demanding, and hard to meet in practice.
Our next main result (Theorem 2) shows that this apparent intuition is misleading: strong
rationalizability is robust in an open and dense subset of types in the universal type-space;
thus, it is not the validity of forward induction what is knife-edge, but rather, the conditions

7See the previous footnote for the case of a commonly known set of payoff-state with product structure.
Allowing for more general sets Θ ⊆ Θ0 ×

∏
j∈I Θj entail less stringent common knowledge assumptions, but

by virtue of Θ being commonly known, is not free of them.
8Technically, the novelty is minimal, and the construction of the universal type-space consists in a trivial

combination of Mariotti, Meier and Piccione (2005) and Brandenburger and Dekel (1993). Conceptually,
Bergemann and Morris (2016) argue that the description of a Bayesian game should separate the basic game
(including a set of payoff-states) from the type-space. We propose to separate utility-functions and sets of
states (including details about private information) from the basic game, and placing them with beliefs.

9And therefore, robust to misspecifications that do not affect information.
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for its robustness to fail.
The intuition behind the contrasting nature displayed by the robustness of weak, back-

ward and strong rationalizability encapsulates one of the main insights of the paper. To
get a grasp of why strong rationalizability is not robust, consider a two-player dynamic
game with perfect information, where: (A) player 1 (the first-mover) has two actions in the
beginning of the game, a1 and b1, and the minimum utility that she can obtain with a1

coincides with the maximum utility that she can obtain with b1, and (B) after b1, player 2
has two actions available, a2 and b2, and b2 always yields a strictly lower utility than a2,
except if player 1 chooses a strictly dominated action after (b1, b2), in which case b2 always
yields a strictly higher utility than a2. In this scenario, observing b1 does not suffice for
player 2 to conclude that player 1 is not rational: 1’s beliefs could be such that a1 and b1

lead to the worst and best possible scenarios following them, respectively, so that according
to (A), player 1 would be indifferent between both actions. Since b1 does not falsify the
rationality of player 1 in 2’s eyes, following the best rationalization principle (that serves
as the foundation of strong rationalizability), 2 should believe that 1 will be rational in her
next move. This eliminates action b2 for player 2: if player 1 is to be rational in her next
move, according to (B), a2 must necessarily be better for 2. Now, suppose that, instead of
(A), player 2’s information is consistent with: (An) the utilities that player 1 obtains after
a1 are the same as in (A) plus 1/n (for n ∈ N). This time, no matter how large n is, player
2 cannot rationalize b1 anymore—a rational player 1 would have necessarily chosen a1. It
is then legit (though not necessary) for player 2 to believe that player 1 may incur on a
new mistake in the future, and this, in turn, may justify that 2 chose b2. Thus, we find a
violation of upper-hemicontinuity: b2 is justifiable for a player 2 with information consistent
with (An) (for every n ∈ N) but not with information consistent with (A). But this failure
of upper-hemicontinuity is simply a manifestation of a failure of lower-hemicontinuity—not
of behavior, but of the set of histories in which restrictions on beliefs are placed: b1 is
rationalizable for a player 2 with information consistent with (A) but not with information
consistent with (An) (for every n ∈ N). As we argue next, this observation has general
validity, and makes the intuition behind Theorems 1 and 2, trivial.

The first theorem is a conclusion of the fact that both weak and backward rational-
izability place exactly the same restrictions at every history.10 Since the set of histories
in which these restrictions are placed is constant on the type’s information, the lower-
hemicontinuity problem sketched above cannot arise. In consequence, neither can failures
of upper-hemicontinuity of behavior. For the intuition behind Theorem 2, notice the crucial
role that the tie specified in (A) plays in the failure of robustness of strong rationalizability.
If player 2’s information was broad enough as to include states in which this tie can be
broken in either direction, then the failure of lower-hemicontinuity of the histories in which
2 can rationalize choice b1 would not arise. Thus, the intuition behind the genericity in
Theorem 2 can be found in the fact that any arbitrarily small ‘inflation’ of a type’s infor-
mation suffices for this information to be broad enough in the aforementioned sense. These

10Each their own: weak rationalizability, certain assumptions in the beginning of the game, and none
afterwards; backward rationalizability, that certain assumptions hold in the continuation play.
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ideas provide the first main conclusion of the paper, and can be summarized as:

Main finding 1. Weakly and backward rationalizable predictions are robust to misspec-
ifications of informational assumptions; strongly rationalizable ones are not. This a is
manifestation of failures of lower-hemicontinuity in the histories in which forward induc-
tion reasoning places constraints over beliefs. However, strongly rationalizable predictions
are generically robust.

We next restrict the informational setting under consideration, to allow for a better
comparison with Chen (2012) and Penta (2012)’s findings. The extensions to dynamic
settings of Weinstein and Yildiz’s (2007) seminal structure theorem in these papers can
be cast in the following terms: no strict refinement of weak rationalizability is robust in
environments where: (C1) there are no information asymmetries about other players’ infor-
mation and the residual payoff-relevant component (i.e., the payoff-information structure is
based on a product set of payoff-states), and (C2) each player’s information about others’
information is always broad enough to permit making sense of every possible behavior that
she observes (the set of payoff-states is rich). This should already raise some questions.
On the one hand, we have seen above that backward rationalizability, a refinement of weak
rationalizability, is robust. On the other, as we prove in Proposition 2, it is easy to see that
strong rationalizability—another refinement of weak rationalizability—is robust to the per-
turbations that respect (C1).11 Corollary 1 reconciles these seemingly contradictory facts
in the only possible way: under richness assumptions à la (C1) and (C2), the predictions
of weak, backward and strong rationalizability all coincide. Back to the example above,
it is tempting to argue that the failure of upper-hemicontinuity of strong rationalizability
sketched there is an artifact of an excessively demanding constraint (that player 2 is unable
to envision a payoff-state that rationalizes b1), and from there, to conclude that a good
modeling practice should look to avoid such pathological phenomena by prescribing that
types’ informational components to be rich enough. Corollary 1 shows that such a model-
ing approach results on the refinements of weak rationalizability based on dynamic criteria
losing their bite.12 Hence the interpretation of Corollary 1 as an ‘impossibility’ result: it is
unavoidable to either restrict the information that enables for rationalization of observed
choices in ad hoc fashion, or to give up on refinements based on dynamic criteria. That is:

Main finding 2. If there are no asymmetries of information about others’ information
and the residual payoff-relevant component, and each player’s information about others’
information is always broad enough to permit making sense of every possible behavior that
she observes, then the dynamic refinement criteria presupposed by backward and forward
induction reasoning have no bite, and fully coincide with those obtained in mainly ex ante
terms (that is, solely alluding to the interim normal-form of the game).

Finally, we study the validity of the equilibrium selection criteria based on robustness to
misspecifications of higher-order information and beliefs. Loosely speaking, the idea behind

11If information about others’ information is constant, no lower-hemicontinuity issues appear.
12A weaker version of this result can be found in Battigalli and Siniscalchi (2007, Proposition 5).
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these techniques (which include global games) is that, in settings with multiple equilibria,
small noise at the higher-orders can suffice to create a contagion argument that result on
the emergence of endogenous coordination in some equilibrium.13 Weinstein and Yildiz’s
(2007) structure theorem raises a critique to this paradigm: in static games, and for any
profile of types, every weakly rationalizable action profile can be uniquely selected by some
perturbation of the type profile. In consequence, selecting an equilibrium on the basis of
some perturbation is, essentially, as ad hoc as selecting said equilibrium without further
argument (as all equilibria admit an analogous justifying perturbation).14 The works by
Chen (2012) and Penta (2012) extend this insight to dynamic games, but reveal significant
caveats that add a critical twist on the message. Chen (2012) requires players not to hold
any private information, and Penta (2012) relaxes this by simply requiring players not to
have information about other players’ information. The fact that these results rely on
strong informational assumptions suggests that the presence of information, or persistent
beliefs, may mitigate the severity of the Weinstein and Yildiz critique in dynamic settings.

Theorem 3 shows that there is some truth to this intuition. There, we show that, for
almost every profile of finite types t, and any outcome z that is strongly rationalizable for
t, there exists some perturbation of t along which weak rationalizability uniquely selects
outcome z. Some minimal informational assumption on the type profile is required though
(hence the ‘almost’); namely, that there exists some payoff-state that is consistent with the
information that each type has. Note that this ‘consistency’ requirement holds by construc-
tion in virtually every model employed in economic theory (following from the informational
component of types being assumed correct) and, furthermore, that no richness assumptions
are imposed.15 Moreover, we document via a counterexample that an analogous selection is
not always possible for backward (and thus weak) rationalizable predictions. Our theorem
not only covers the results by Weinstein and Yildiz (2007), Chen (2012) and Penta (2012) as
special cases, but (together with the counterexample) also clarifies the extent to which the
Weinstein and Yildiz critique applies to dynamic games. On the one hand, only some pre-
dictions of weak rationalizability (including those of strong rationalizability) are signified,
in the sense of admitting unique selections. On the other, the critique remains pertinent
if restricted to equilibrium outcomes that are consistent with strong rationalizability. In
particular, together with part 2 of Theorem 1, our structure theorem automatically im-
plies that backward rationalizable predictions contain those by strong rationalizability for
consistent type profiles. In summary:

Main finding 3. Strongly rationalizable outcomes characterize the predictions of weak
rationalizability that can be uniquely selected via a small noise in information and beliefs—
regardless of informational assumptions, including richness ones. Hence, Weinstein and
Yildiz’s (2007) critique extends to dynamic games if the focus is on strongly rationalizable
predictions, but not otherwise.

The rest of the paper is structured as follows. Section 2 presents the approach to
13Once again, the logic follows that sketched in the explanation of Rubinstein’s (1989) Email game.
14Morris, Shin and Yildiz (2016) eloquently argue against taking this view too seriously.
15On the benchmark type profile—richness assumptions do play a crucial role in the perturbation.
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uncertainty and the main results in a simplified way, with a focus on examples. Section 3
introduces the model of payoff-uncertainty and the game-theoretic preliminaries that our
analysis relies on. Section 4 presents the main findings of the paper. Section 5 ends with
some literature review and additional discussion. All proofs are relegated to the appendix.

2 Informal example

In this section we provide a (rather) nontechnical example aimed at providing the main
intuitions behind the more formal presentation later found in Section 3. We begin with a
description of the game-theoretical settings covered by the paper. Next, we jump to a suc-
cinct overview of the two ingredients of our model of payoff-uncertainty: the use of profiles
of utility-functions as states, and the incorporation in types of an informational component
that puts persistent restrictions on players’ higher-order beliefs about the payoff-state. Fi-
nally, we present an example illustrating the differences in the robustness to informational
assumptions that different variants of dynamic reasoning display.

2.1 Extensive-forms and payoff-states

We focus on situations of sequential choice consisting of finitely many stages. At each stage,
some players (possibly one), already informed about all the choices in previous stages, choose
actions simultaneously. Previous sequence of choices determines which players are active
at each stage, and which are the actions available to each of these players. The following
extensive-form provides an illustration of such an scenario:

1 2 1a1

b1

a2

b2

a3

b3

Here, players i ∈ I = {1, 2} choose alternatively. At the initial stage, player 1 chooses be-
tween a1 and b2. If she chooses b1 the game is over; otherwise, the game advances to its sec-
ond stage and player 2 is called into action. At this second stage, player 2 (who knows that
1 chose a1 at the first stage) chooses between a2 and b2. If she chooses b2, the is game over;
otherwise, the game advances to its final stage, where player 1 (who knows that 2 chose a2
at the first stage) chooses between a3 and b3 and terminates the game. Thus, the set of pos-
sible terminal histories of choices, or outcomes, is Z = {b1, (a1, b2), (a1, a2, a3), (a1, a2, b3)}.
Obviously, situations where each stage involves more than one player, with more than two
actions available to each of them, are allowed for.

Players have von Neumann-Morgenstern preferences over outcomes but face uncer-
tainty about each other’s preferences (possibly, even about their own). This form of
payoff-uncertainty is formalized by representing the possible profile of utility-functions over
outcomes that players may have as payoff-states. By standard expected utility theory,
it is w.l.o.g. to assume that players’ utilities take values in [0, 1]. Accordingly, we let
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Θ∗ =
∏

i∈I [0, 3]
Z denote the set of all possible payoff-states given players I and outcomes

Z.16 For the extensive-form above we may have, for example, payoff state θ,

Payoff-state θ0

1 2 1

2

0
0
1

2
0

0
2

a1

b1

a2

b2

a3

b3

or, for each n ∈ N, payoff-states θ−n or θ+n,

Payoff-state θ−n

1 2 1

2− 1
n

0
0
1

2
0

0
2

a1

b1

a2

b2

a3

b3

Payoff-state θ+n

1 2 1

2 + 1
n

0
0
1

2
0

0
2

a1

b1

a2

b2

a3

b3

so that, for example, the utilities that outcome b1 yields to players 1 and 2 are 2− 1/n and
0, respectively, at payoff-state θ−n, and 2 + 1/n and 0, respectively, at payoff-state θ+n.

2.2 Information and (other) beliefs

In the context above, each player’s assessment of payoff-uncertainty is represented by a
type consisting of two different components: information and beliefs. These elements can
be understood in hierarchical terms, as usual:

(1) Player i’s first-order model is a pair M1
i = (∆1

i , τ
1
i ) where ∆1

i is set of payoff-states
(i’s first-order information) and τ1i is a probabilistic belief about payoff-states (i’s
first-order belief) with probabilities concentrated in ∆1

i . The interpretation is the
following. τ1i represents the beliefs that player i holds at the beginning of the game,
which are subject to evolve in response to the choices of others’ that she observes
throughout the interaction. The informational component ∆1

i , on the contrary, is
assumed to remain constant along the whole interaction, and collects the only states
that player i can consider as possible as the game unfolds—so that no θ /∈ ∆1

i can
ever get positive probability for i. Thus, the information and belief components place
persistent and initial restrictions, respectively: the latter fully describes the initial
likelihood that player i assigns to each state, and the former establishes limits on the
support of the updated beliefs.

16That is, a payoff-state θ ∈ Θ∗ is a profile (θi)i∈I whose ith component, θi : Z → [0, 3], describes the
utility-function that represents player i’s preferences over Z at state θ. The admittedly arbitrary choice of
3 as maximum bound is to simplify the exposition that follows; in Section 3 this is normalized to 1.
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(2) Player i’s second-order model is a pair M2
i = (∆2

i , τ
2
i ), where ∆2

i and τ2i represent
player i’s second-order information and beliefs, respectively, as follows. ∆2

i is a col-
lection of pairs (θ,M1

−i) where θ is a payoff-state and M1
−i is a description of other

players’ first-order models. τ2i is a probabilistic belief about payoff-states and other
players’ first-order models with probabilities concentrated in ∆2

i . Similarly as before,
τ2i represents the beliefs that player i holds at the beginning of the game, which are
subject to evolve in response to the choices of others’ that she observes throughout the
interaction. The informational component ∆2

i is again assumed to remain constant
along the whole interaction, and collects the only pairs of states and others’ first-order
models that i can consider as possible as the game unfolds. Again, information and
beliefs place persistent and initial restrictions on beliefs, respectively.

· · ·

A natural iterative procedure gives rise to an infinite hierarchy of finite-order models ti =
(M1

i ,M
2
i , . . . ,M

k
i , . . . ), which we refer to as type for player i.17 This formulation allows for

representing all kind of usual (and less usual) dynamic games, depending on the specific
type-profile that we endows players with. For example, within the context of the extensive-
form in the previous paragraph we can have:

(i) Payoff-uncertainty with symmetric information and a common prior. Consider set of
payoff-states Θ = {θ−n, θ+n} and probability measure q, where q[θ−n] = q[θ+n] = 1/2.
Then, pick profile of types (t1, t2) where the first-order model of each ti is M1

i =

(Θ, q) and its higher-order models represent persistent and initial common belief in
(M1

1 ,M
1
2 ).18 In this scenario, throughout the whole interaction, players will only

assign positive probability to states in Θ and, while these probabilistic assessments
may evolve as the game unfolds, each player will initially have a uniform assessment
of the likelihood of the payoff-states in Θ.

(ii) Complete information. Suppose that each player i is endowed with type ti that
represents both persistent and initial common belief in payoff-state θ0.19 In such
a case, no matter how the game unfolds, players will persistently believe that the
following game depicts the situation:

17The usual higher-order coherency requirement between lower and higher-order models is assumed.
Namely, for all k ≥ 1, between ∆k

i and a projection of ∆k+1
i , and between τk

i and a marginal of τk+1
i .

18That is, type ti’s second-order model is M2
i = (Θ × {M1

−i}, τ2
i ), where the marginal on Θ∗ of τ2

i is q,
and τ2

i [Θ× {M1
−i}] = 1. This represents the facts that the only first-order model that player i persistently

envisions as possible for the other player is M1
−i, and that the latter is the only first-order model of the

other that i can initially assigns positive probability to. The higher-order models that capture these ideas
of persistent and initial common belief can be easily retrieved in iterative fashion.

19Similarly as before, player i’s first-order model is M1
i = ({θ0}, p) with p[θ0] = 1; her second-order model

is M2
i = ({(θ0,M1

−i)}, p× q), where q[M1
−i] = 1; and so on.
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(iii) Incorrect asymmetric information. The framework allows for representing situations
in which players’ persistent beliefs can greatly differ, to the extent that, as explained
in the paragraph below, certain nonstandard phenomena manifest. For example,
suppose that the following two hold: (A) for player 2, the dynamic game corresponds
to the complete-information game parametrized by payoff-state θ−n, and (B) the
latter is known by player 1, for whom the true payoff-state is θ+n. This situation can
be formalized by: (A) endowing player 2 with type tn2 with first-order information
∆1

2 = {θ+n} and first-order beliefs τ12 that put probability 1 on θ+n, and whose higher-
order models represent persistent common belief of said scenario, and (B) endowing
player 1 with type tn1 with first-order information ∆1

1 = {θ−n} and first-order beliefs
τ11 that put probability 1 on θ−n, and whose higher-order models represent persistent
and initial higher-order belief in the scenario represented by tn2 .20

It is important to highlight the differences between the vignettes described in (i) and (iii).
In the former, both players may eventually envision θ−n and θ+n as possible; in the latter,
player 2 will never consider θ+n to be the true state, no matter what behavior by 1 she
observes throughout the game (similarly, player 1 will never take θ−n as the true state, but
will be aware of the fact that, in 2’s mind, θ−n is the only state that matters).

2.3 Misspecificified information and strategic behavior

Consider again the game with complete information and utility-functions represented by
payoff-state θ0, already discussed in Example (ii) above. The prediction in this game seems
self-evident: player 1 should choose b1 in her first turn, regardless of whether she reasons
in backward or forward inductive way:

• If players reason in backward inductive way (according to what we call, below, ‘back-
ward rationalizability’), then the logic is clear: in her second turn, where the decision
does not involve any strategic uncertainty, player 1 would choose b3; anticipating this,
player 2 would choose b2 in her turn and thus, anticipating this, player should decide
to terminate the game at the first stage. Hence b1.

• If players reason in forward inductive way (according to what we call, below, ‘strong
rationalizability’), trying to draw inferences about future behavior based on observa-
tions of previous behavior, the same conclusion is reached. First, a rational player 1

20As said, the first-order information that players 1 and 2 have is, respectively, ∆1
1 = {θ−n} and ∆1

2 =
{θ+n} (the first-order beliefs are thus obvious); the second-order information that players 1 and 2 have, is
respectively, ∆2

1 = {θ−n, {θ+n}} and ∆2
2 = {θ+n, {θ+n}}; the third-order information that players 1 and 2

have is, respectively, ∆3
1 = {θ−n, {θ+n}, {θ+n, {θ+n}}} and ∆2

2 = {θ+n, {θ+n}, {θ+n, {θ+n}}}; and so on.
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would never choose a3 in her second turn. Second, if player 2 had observed a1, while
she could be surprised that 1 took the risk of advancing instead of guaranteeing utility
2, she need not abandon the belief that 1 is rational: player 1 may have advanced,
rationally, by believing that 2 does not expect her to be rational in her second turn,
and thus believing that 2 will advance as well. In consequence, by keeping the belief
that 1 is rational and will thus choose b3 in her second turn, player 2 would choose
b2. Anticipating this, the first choice of player 1 is clear.

These conclusions are in contrast with what we could expect to happen in the scenario
depicted in Example (iii), where players held different information (or persistent beliefs)
about the payoff-state—for 2 the setting is as in complete-information game parametrized
by θ+n, and for player 1, who is aware of the previous fact, the true payoff-state is θ−n:

Payoff-state θ−n

1 2 1

2− 1
n

0
0
1

2
0

0
2
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b1

a2

b2
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b3

Payoff-state θ+n

1 2 1

2 + 1
n

0
0
1

2
0

0
2

a1

b1

a2

b2

a3

b3

In this case:

• Things do not seem to vary much if players reason in backward inductive way. At
her second turn, player 1 would choose b3 regardless of her beliefs about the payoff-
state: in both cases it yields a higher utility than a3. Anticipating this, Player 2,
whose strategic considerations are fully focused on the game depicted in the right
side, would choose b2. Anticipating this, player 1, who considers the game in the left
to represent the true situation, but is aware of the fact that in 2’s mind it is the game
in the right the one that counts, would assume that aiming for outcome (a1, a2, b3)

(which yields a higher utility than b1) is unrealistic, and thus choose b1.

• Now, if players reason in forward inductive way, new predictions arise. To see it, let
us focus first on player 2. If called into action, player 2 knows that player 1 has chosen
a1. Now, given that, for her, the only relevant state is θ+n (she totally omits θ−n

from her analysis of the situation), this choice of 1 is impossible to rationalize: by
choosing a1 player 1 has given up on utility 2 + 1/n knowing the maximum utility
that she can obtain by doing so is 2. There are two possible ways in which player 2
can react to this: either (A) she believes that choosing a1 must have been a mistake
that is not indicative of future mistakes (as when reasoning in backward inductive
way), or (B) she takes a1 as indisputable evidence that 1 is likely to incur on erratic
choices in her second turn. Thus, depending on how 2 interprets 1’s choice, she will
incline towards b2 or a2. The former in case of (A) for her, the latter in case of (B).

Given the above, whether player 1 choose between a1 or (2) will depend on how she
expects 2 to interpret a1. If player 1 expects a1 to be interpreted as a mistake, she
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will opt for b2 while if she expects it to be interpreted a sign of persistent erratic
behavior, she will opt for a1.21 In consequence, we obtain three possible predictions:
b1, (a1, b2) and (a1, a2, b3).

Notice that these conclusions are true for every n ∈ N; that is, no matter how closely this
second scenario approaches the one with complete information—notice that as n grows, the
utility-functions specified by both θ−n and θ+n become arbitrarily close to those specified
by θ0 and hence arbitrarily close to complete information.

Thus, the example reveals a few phenomena—some of them nonstandard. First, that
backward inductive predictions are robust to the particular misspecification of information
described in the example: the perturbation of the benchmark scenario (complete informa-
tion with utilities given by θ0) does not give rise to new predictions (we always have only
b1); below we explore whether this observation generalizes or not. Second, that forward
inductive prediction are not robust: any arbitrary small perturbation (arbitrarily large n)
suffices for predictions omitted in the benchmark model to appear; below we study the
extent to which this lack of robustness is critical or not. Finally, the examples suggests
that the classic insight regarding the use of forward induction as a refinement argument
for backward inductive predictions may be very fragile:22 arbitrarily small perturbations
suffice for forward inductive predictions not to refine backward inductive ones.

3 Framework

We now introduce the formal tools required to give some the necessary rigor to the ideas
sketched above. In Section 3.1 we present our model of payoff-uncertainty, which serves as
a primitive for the kind of games that we focus on: dynamic Bayesian games, formalized in
Section 3.2. Once the framework is clear, in Section 3.3 we present the adaptation to the
present setting of the different models of behavior, or solution concepts, whose robustness
we later analyze.

3.1 Model of payoff-uncertainty

As mentioned above, our model of payoff-uncertainty is mostly standard, except for two
minor novelties regarding the particular kind of payoff-states that we focus on, and the
formalization of the possible information that players may hold—the latter does not only
concern payoff-states but also other players’ types. We first formally describe our type-
spaces and briefly recall how to construct a universal type-space that allows for relaxations
of common knowledge assumptions regarding the set of payoff-states and the typology of
information. Next, we show how our modeling allows for said typology to be a feature of
each type, and we end with some discussion.

21The strategy of playing dumb is a commonplace in popular culture; as Suetonius (121) writes about
Emperor Claudius: “He did not even keep quiet about his own stupidity, but in certain brief speeches he
declared that he had purposely feigned it under [Caligula], because otherwise he could not have escaped alive
and attained his present station. But he convinced no one, and within a short time a book was published,
the title of which was ‘The Elevation of Fools’ and its thesis, that no one feigned folly.” The italics are ours.

22Or, more precisely, that strong rationalizability refines those backward rationalizability outcomewise
(see Reny, 1992, Battigalli, 1996, Chen and Micali, 2013, or Perea, 2018a,c)
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Type-spaces. The members of a finite set of players I have preferences over the elements
of a finite set of outcomes Z. The preference of each player i can be represented by a
(von Neumann-Morgenstern) utility-function θi : Z → R, and players may face uncertainty
about the profile of utility-functions θ ∈

∏
j∈I R

Z , or payoff-state, that describes each
other’s utility-functions. The information and beliefs that players may hold about the
payoff-state is represented by a type-space:23

Definition 1 (Type-spaces). Let I and Z be finite sets of players and outcomes, respec-
tively. Then, a type-space is a list T = (Θ, (Tj ,∆j , τj)j∈I), where Θ ⊆

∏
j∈I R

Z is a
compact Polish set of payoff-states and, for each player i:

1. Ti is a compact Polish set of types.

2. ∆i : Ti ⇒ Θ× T−i, where T−i :=
∏

j ̸=i Tj, is a continuous possibility-correspondence
with nonemtpy and compact values.

3. τi : Ti → ∆(Θ× T−i) is a continuous belief-map with τi(ti) [∆i(ti)] = 1 for every ti.

That is, each type ti describes a model (∆i(ti), τi(ti)) where ∆i(ti) is set of payoff-
states and other players’ types (ti’s information) and τi(ti) is a probabilistic belief about
payoff-states (ti’s beliefs) with probabilities concentrated in ∆i(ti). The interpretation is
the following. τi(ti) represents the probabilistic beliefs that type ti initially holds, which
are subject to evolve in response to how she may observe other players to choose. The
informational component ∆i(ti), on the contrary, is assumed to always remain constant,
and collects the only payoff-states and other players’ types that ti can consider as possible,
regardless of how she observes others to choose—so that no (θ, t−i) /∈ ∆i(ti) can ever get
positive probability for i. Thus, the information and belief components place persistent and
initial restrictions, respectively: the latter fully describes the initial likelihood that player
i assigns to each payoff-state and others’ types, and the former establishes limits on the
support of updated beliefs.

Universal type-space. Given a type-space T , each type ti encodes a unique hierarchy of
models µi(ti) := (µki (ti))k∈N. Type ti’s first-order model, describing information and beliefs
about the payoff-state is µ1i (ti) := (∆1

i (ti), τ
1
i (ti)) := (ProjΘ∆i(ti),margΘτi(ti)). Type ti’s

second-order model, describing joint information and beliefs about the payoff-state and oth-
ers’ first-order models, is µ2i (ti) := (∆2

i (ti), τ
2
i (ti)), where ∆2

i (ti) := {(θ, µ1−i(t−i))| (θ, t−i) ∈
∆i(ti)} and, for every measurable E ⊆ Θ×

∏
j ̸=i∆(Θ),

τ2i (ti)[E] := τi(ti)
[{
(θ, t−i) ∈ Θ× T−i

∣∣ (θ, µ1−i(t−i)) ∈ E
}]
.

A standard recursive procedure give rise to the complete hierarchy µi(ti). A straightforward
combination of Mariotti, Meier and Piccione (2005) and Brandenburger and Dekel (1993)

23Throughout, finite sets and reals are endowed with the discrete and usual topology, respectively. Prod-
ucts of topological spaces are endowed with the product topology, and the space of compact subsets of a
topological space is endowed with the Hausdorff metric. For a topological space X the set of probability
measures on its Borel σ-algebra is denoted by ∆(X) and equipped with the topology of weak convergence.
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establishes the existence of a universal type-space T ∗ = (Θ∗, (T ∗
j ,∆

∗
j , τ

∗
j )j∈I) where Θ∗ :=∏

j∈I [0, 1]
Z , each T ∗

i consists in the collection of all possible hierarchies of models for player
i, and the usual universality properties à la Mertens and Zamir (1985) hold. First, T ∗

encapsulates all the possible information and beliefs about the payoff-state and others’
hierarchies of models that a player may hold in the form of a specific hierarchy of models.
Second, the set of types of player i of every type-space can be envisioned as a subset of T ∗

i

in a way that information and beliefs remain qualitatively invariant.24

Typologies of information. Within a type-space T , each type ti is interpreted as
only considering as possible states θ ∈ ProjΘ∆i(ti) and systematically excluding the rest.
On top of this, it is a frequent in economic modeling to assume that players commonly
believe that each type considers as possible all the types of others’ whose information is
consistent with hers—and only those.25 To capture this, we say that a type-space T is
information-based if, for every player i and every type ti:

∆i(ti) =

(θ, t−i) ∈ Θ× T−i

∣∣∣∣∣∣ θ ∈
⋂
j∈I

ProjΘ∆j(tj)

 .

Each type’s private information is often interpreted as objectively correct, so that a profile of
types t is consistent if

⋂
j∈I ProjΘ∆j(tj) 6= ∅. The following cases have received particular

attention in economics:26

• Basic information. Settings in which the information about the payoff-states is com-
pletely uniformative about others players’ types, or more formally, where ∆i(ti) =

ProjΘ∆i(ti)× T−i for every player i and every type ti.

• No information. Settings in which it is common knowledge that players hold the same
information about the payoff-state and have no additional information about others
players’ types. That is, type-spaces where ∆i(ti) = Θ × T−i for every player i and
every type ti.

• Private values. Setting in which players always know their own utility function but
may be uncertain about others’; that is, type-spaces where, for every player i and
type ti, where elements in (ProjΘ∆i(ti))i are positive transformations of each other.

24Section A.2 provides a more rigorous construction, but let us give some further detail also here. First,
T ∗
i is homeomorphic to the space of all models (Ki, Pi) where Pi is a compact subset of Θ∗×T ∗

−i and Pi is a
probability measure on Θ∗ × T ∗

−i with support contained in Ki. Thus, every possible model can be models
can be encoded as a hierarchy of (finite-order) models. Second, for every type-space T = (Θ, (Tj ,∆j , τj)j∈I)
there exist embeddings: (1) ϕT

0 : Θ → Θ∗ such that (ϕ0(θ))i is a positive transformation of θi for every
player i and every payoff-state θ, and (2) for every player i, ϕT

i : Ti → T ∗
i such that, for every type ti,

we have ∆∗
i (ϕ

T
i (ti)) = {(ϕT

0 (θ), (ϕT
j (tj))j ̸=i)| (θ, t−i) ∈ ∆i(ti)}, and τ∗

i (ϕ
T
i (ti))[E] = τi(ti)[{(θ, t−i) ∈

Θi × T−i| (ϕT
0 (θ), (ϕT

j (tj))j ̸=i) ∈ E}] for every measurable E ⊆ Θ × T ∗
−i. Thus, every type-space can be

regarded as a subspace of T ∗.
25E.g., in the literature in robust mechanism design—see Bergemann and Morris (2009, 2011), Penta

(2012), Ollár and Penta (2017) or Müller (2016, 2020).
26The papers cited in the previous footnote all deal with the first case. For examples with trivial informa-

tion, see Weinstein and Yildiz (2007) and Chen (2012) in the literature in robustness to higher-order beliefs,
or Oury and Tercieux (2012) in mechanism design. For private values in mechanism design, see Heifetz and
Neeman (2006) or Chen and Xiong (2013).
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The modeling above allows for determining which is the particular typology of infor-
mation that a canonical type ti ∈ T ∗

i has, without the need to fully specify the partic-
ular type-space in which ti is encoded. More precisely, we can think of which the most
stringent typology of information that a type-space in which the canonical type can be
encoded satisfies, so that a canonical type ti ∈ T ∗

i is information-based if there exists some
information-based type-space T = (Θ, (Tj ,∆j , τj)j∈I) such that ϕT

i (ti) = t∗i for some type
ti ∈ Ti. Accordingly, ti has basic information if there is some information-based type-space
with basic information that encodes ti, and has no information if, among these type-spaces,
some has no information.

Discussion. Two features of the type-spaces introduced here are nonstandard. First, we
envision payoff-states as profiles of utility-functions, not as exogenous parameters that, to-
gether with outcomes, are plugged into some general utility-function. Second, our possibility-
correspondences map types to subsets of Θ × T−i, not simply Θ. The reasons for both
modeling choices are intertwined, but the main advantage lies on allowing for a canonical
type-space that captures types with arbitrary typology of information and/or consistent
with arbitrary common belief assumptions (or lack thereof) about said typology. On the
one hand, working directly with profiles of utility-functions allows for dispensing with the
common knowledge implicit in the mathematical structure of an exogenously set of pa-
rameters that usually serve as payoff-states. On the other hand, by leveraging on the
persistent restrictions that our richer possibility-correspondence allows for, we can cap-
ture types that exhibit any of the aforementioned common knowledge assumptions. In
consequence, the ability to capture all forms of beliefs about the typology of information
emerges as particularly useful—if not strictly necessary—for the focus of the paper: the
study of misspecifications of informational assumptions and its interplay with the impact
of higher-order beliefs on strategic behavior on dynamic settings.27

Another important advantage, discussed in Section 3.3 below, is that the persistent
restrictions on others’ types permitted by our possibility-correspondences result on the type-
space invariance of the variants of rationalizability that we study—that is, the predictions of
our models of strategic behavior will only depend on the hierarchy associated to each type,
not on the specific type-space that encodes the hierarchy. In consequences, the modeling
allows for the formalization of strategic behavior being robust to the specific type-space
chosen by the analyst to encode the hierarchy that captures exogenous restrictions on
information and beliefs. In consequence, our focus on canonical types is fully justified.

3.2 Dynamic Bayesian games

A dynamic Bayesian game is a pair (E ,T ) where E is an extensive-form describing the
players’ possible sequences of choices and their information about previous moves, and T

is a type-space whose set of payoff-states describes the possible profiles of players’ utility-
27Section A provides details on the connection of our formalism with various standard tools in the lit-

erature. We show that payoff-information structures (e.g., Penta, 2012), ∆-restrictions with types (e.g.,
Battigalli and Siniscalchi, 2003), and settings with context misalignment (c.f., Guarino and Ziegler, 2022)
all fall under the umbrella of the types here.
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functions over over terminal sequences of choices. More specifically, we have:

• E = (I, (Aj)j∈I ,H, Z), where I is s finite set of players, and for each player i, Ai is a
finite set of actions. H and Z are finite sets of histories, finite sequences of possibly
simultaneous choices representing the possible ways in which the game may unfold.
We say that history h′ follows h if it obtains from the latter via the concatenation of
finitely many possibly simultaneous choices, thus inducing a natural order on H ∪Z,
assumed to be an oriented tree with root h0—the initial history—and set of terminal
nodes, or outcomes, Z. Histories in H are referred to as partial, and by Hi we denote
the set of partial histories in which player i is active, i.e., those in which the set of
actions available to i at h, Ai(h), is nonempty.28

Within E , player i’s set of strategies is defined as Si :=
∏

h∈Hi
Ai(h) and, as usual,

we denote the set of i’s opponents strategies by S−i :=
∏

j ̸=i Sj . The set of strategy
profiles is S :=

∏
j∈I Sj and, beginning at a partial history h, each profile s induces

a unique conditional outcome z(s|h). For each partial history h, we let Si(h) denote
the set of player i’s strategies that reach h, and write S−i(h) =

∏
j ̸=i Sj(h). For each

strategy si, Hi(si) denotes the set of i’s histories that can be reached by si.29

• T = (Θ, (Tj ,∆j , τj)j∈I), where, as discussed in the previous section, Θ ⊆
∏

j∈I R
Z is

a set of payoff-states and, for each player i, θi : Z → R describes the utility-function
over outcomes that corresponds to i at each state θ.

The focus of our analysis is on the robustness of different models of individual behavior at
interim level, that is, in interim solution concepts Ii : Ti ⇒ Si that describe the dependence
of the strategies that a player may choose with her assessment of the payoff-uncertainty. The
notion of robustness that we study is conservative: small misspecifications of a player’s type
should not give rise to new predictions. Formally, an interim solution concept Ii : Ti ⇒ Si

is robust if it is an upper-hemicontinuous correspondence.30

3.3 Solution concepts

We study three variants of rationalizability for dynamic games: weak, strong and backward
rationalizability. All these interim solution concepts characterize the behavioral implica-
tions of rational players who engage on different versions of strategic reasoning. We first
recall the usual notion of sequential rationality, and then present the restrictions on con-
jectures that allow for formalizing the variants of strategic reasoning that we focus on.

(Sequential) Rationality. In a dynamic Bayesian game each player i is uncertain
about the payoff-state and about other players’ strategies and types, and we represent the

28Formally, a history consists in a finite sequence with components in {h0} ∪ A, where A :=
∪

J⊆I AJ

and AJ :=
∏

i∈J Ai for each nonempty J ⊆ I. h follows h′ if there is some (an)n≤N with components in A

such that h′ = (h, a1, a2, . . . , aN ). We focus on multistage-games with observable actions (e.g., Fudenberg
and Tirole, 1991) but the analysis extends to extensive-forms with ambiguous orderings of information sets
(e.g., Topolyan, 2020).

29That is, Si(h) = {si ∈ Si|h ⪯ z(s−i; si|h0) for some s−i ∈ S−i} and S−i(h) =
∏

j ̸=i Sj(h) on the one
hand, and Hi(si) := {h ∈ Hi|si ∈ Si(h)} on the other.

30I.e., for any sequence (tni )n∈N with limit ti, and any si ∈
∩

n∈N
Ii(t

n
i ), it must be the case that si ∈ Ii(ti).
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beliefs that i holds at the different stages of the game via a conjecture µi : Hi ∪ {h0} →
∆(S−i × Θ × T−i) satisfying that: (C1) at each h ∈ Hi ∪ {h0} player i knows that h has
been reached and, (C2) whenever possible, i updates her beliefs via conditional probability:

(C1) µi(h)[S−i(h)×Θ× T−i)] = 1.

(C2) For any h′ ∈ Hi such that S−i(h
′) ⊆ S−i(h) and µi(h)[S−i(h

′) × Θ × T−i] > 0, and
every measurable E ⊆ S−i ×Θ× T−i,

µi(h
′)[E] =

µi(h
′)[E ∩ (S−i(h)×Θ× T−i)]

µi(h)[S−i(h′)×Θ× T−i]
.

A conjecture µi induces a conditional expected utility for each strategy si at every history
h ∈ Hi ∪ {h0}. We can thus recall the usual notion of (sequential) rationality, according to
which si is a (sequential) best-reply for µi if it maximizes i’s conditional expected utility at
every history that it reaches. Hence, player i’s set of best-replies to µi is:

ri(µi) :=

si ∈ Si

∣∣∣∣∣∣ si ∈
⋂

h∈Hi(si)

arg max
s′i∈Si

∫
S−i×Θ

θi(z((s−i, s
′
i)|h))d(margS−i×Θµi(h))

 .

Our analysis focuses on players already endowed with a type; thus, the conjectures that
are consistent with the restrictions that a type ti imposes over the belief Θ × T−i are of
special interest. We say that conjecture µi is consistent with ti if the probability of every
µi(h) is concentrated on S−i(h) × ∆i(ti) and, at the initial history, µi(h0) marginalizes
to τi(ti). Thus the aforementioned interpretation of ∆i(ti) as restrictions on beliefs that
are never abandoned throughout the game, and τi(ti), as initial beliefs that may evolve.
Formally, µi is consistent with ti if:

(C3) µi(h)[S−i(h)×∆i(ti)] = 1 for every h ∈ Hi ∪ {h0}.

(C4) margΘ×T−i
µi(h

0) = τi(ti).

We denote the set of player i’s conjectures consistent with type ti by CT
i (ti).

Variants of strategic reasoning. The main interim solution concepts we analyze
throughout the paper are based on rationality and assumptions on how players reason
strategically—the main differences arising from the specific beliefs and higher-order beliefs
about mutual rationality that players hold at each history of the game. It is thus convenient
to recall first the constraints on beliefs that capture the solution concept below:

Definition 2 (Initial, strong and future belief). Let (E ,T ) be a dynamic Bayesian game
and let (Ij)j∈I be a profile of interim solution concepts. Then, for any player i and any
type ti we say that conjecture µi ∈ CT

i (ti) displays:

1. Initial belief in I−i if, for history h = h0,

µi(h)[M ×Θ] = 1 for some measurable M ⊆ Graph(Ih
−i).
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2. Strong belief in I−i if, for every h ∈ Hi∪{h0} s.t. S−i(h)×∆i(ti)∩Graph(I−i)×Θ 6= ∅,

µi(h)[M ×Θ] = 1 for some measurable M ⊆ Graph(Ih
−i).

3. Future belief in I−i if, for every h ∈ Hi ∪ {h0},

µi(h)[M ×Θ] = 1 for some measurable M ⊆ Graph(Ih
−i),

where, for each player j 6= i and each type tj ∈ Tj,

Ih
j (tj) :=

⋃
sj∈Ij(tj)

{s′j ∈ Sj | s′j(h′) = sj(h
′) for all h′ ∈ Hj s.t. Sj(h′) ⊆ Sj(h)}.

That is, a conjecture µi (consistent with type ti) that initially believes in I−i represents a
player i who, at the beginning of the game believes that other players’ behavior is consistent
with the predictions of I−i but, upon reaching some unexpected history (i.e., one such that
µi(h

0)[S−i(h) × Θ × T−i] = 0), may hold any arbitrary belief about others’ play. Strong
belief constrains belief updates at unexpected histories by requiring that, if reaching an
unexpected h is consistent with I−i(t−i) for some t−i in ∆i(ti), then belief in I−i is kept.
Finally, future belief captures the usual continuation consistency requirement of backward
induction procedures: even if the history reached is inconsistent with I−i, belief in future
play following I−i is always held. Applying each of these version of beliefs iteratively, we
obtain three different dynamic variants of rationalizability:

Definition 3 (Weak rationalizability, c.f. Penta, 2012). Let (E ,T ) be dynamic Bayesian
game. The weakly rationalizable strategies of player i are given by WT

i : Ti ⇒ Si where,
for each type ti we have WT

i (ti) :=
⋂

k≥0WT
i,k(ti) with WT

i,0(ti) := Si, and, for every k ≥ 0,

WT
i,k+1(ti) :=

si ∈ WT
i,k(ti)

∣∣∣∣∣∣∣∣∣
There exists some µi ∈ CT

i (ti) such that:

(1) si ∈ ri(µi),

(2) µi displays initial belief in WT
−i,k

 .

Definition 4 (Strong rationalizability, cf. Pearce, 1984; Battigalli, 1997). Let (E ,T ) be
dynamic Bayesian game. The strongly rationalizable strategies of player i are given by
ST
i : Ti ⇒ Si where, for each type ti we have ST

i (ti) :=
⋂

k≥0 ST
i,k(ti) with ST

i,0(ti) := Si,
and, for every k ≥ 0,

ST
i,k+1(ti) :=

si ∈ ST
i,k(ti)

∣∣∣∣∣∣∣∣∣
There exists some µi ∈ CT

i (ti) such that:

(1) si ∈ ri(µi),

(2) µi displays strong belief in ST
−i,k

 .
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Definition 5 (Backward rationalizability, c.f. Catonini and Penta, 2022). Let (E ,T ) be
dynamic Bayesian game. The backward rationalizable strategies of player i are given by
BT
i : Ti ⇒ Si where, for each type ti we have BT

i (ti) :=
⋂

k≥0 BT
i,k(ti) with BT

i,0(ti) := Si,
and, for every k ≥ 0,

BT
i,k+1(ti) :=

si ∈ BT
i,k(ti)

∣∣∣∣∣∣∣∣∣
There exists some µi ∈ CT

i (ti) such that:

(1) si ∈ ri(µi),

(2) µi displays future belief in BT
−i,k

 .

This way, weak rationalizability captures the behavioral consequences of sequential ra-
tionality and common initial belief thereof, and is a straightforward adaptation to our
setting of Penta’s (2012) interim sequential rationalizability.31 Strong rationalizability (or
extensive-form rationalizability, as in Pearce, 1984, and Battigalli, 1997) refines weak ra-
tionalizability via a forward induction criterion: At each history h, player i is required to
believe that others play following the ST

−i,k with the highest k that reaching h is consistent
with. That is, players rationalize observed behavior to the highest possible degree.32 Fi-
nally, backward rationalizability captures the idea of ‘continuation consistency’ (or, loosely
speaking, subgame-perfection) usual in backward induction procedures.33

Notably, under the notion of type that we employ, all these solution concepts exhibit
the robustness property known astype-space invariant, so that the strategies corresponding
to each type only depend on the type’s hierarchy of models (not on the specific type-space).
This feature is specific to our notion of type, where each ∆i(ti) only considering types T−i

throughout the whole game and thus, embedding a type in a larger type-space does not
alter the way in which beliefs can be updated.

Proposition 1. Let (E ,T ) be a dynamic Bayesian game. Then for every player i and
every type ti the following three hold:

1. WT
i (ti) = WT ∗

i (ϕT
i (ti)).

2. ST
i (ti) = ST ∗

i (ϕT
i (ti)).

3. BT
i (ti) = BT ∗

i (ϕT
i (ti)).

Based on this, for the rest of the paper we drop superscript T ∗ when applying the
solution concepts to dynamic Bayesian games where the type-space is universal.

31Which, in turn, is the sequential rationality counterpart to Dekel, Fudenberg and Morris’s (2007) in-
terim correlated rationalizability (ICR), employed by Chen (2012), and founded on ex ante, not sequential,
rationality. See Ben Porath (1997) for a study of sequential rationality and common initial belief thereof in
settings with complete information.

32I.e., Battigalli’s (1996) best rationalization principle applies. See Battigalli and Siniscalchi (2002) for an
analysis on the foundations of the solution concept, based on ‘rationality and common strong belief therein’.

33The version of backward rationalizability here is a straightforward adaptation of Catonini and Penta’s
(2022) original notion. The epistemic foundations of the solution concept are studied by Perea (2014) and
Battigalli and De Vito (2018), and founded on ‘common belief in future rationality’ in the former, and
’common full belief in optimal planning and in belief in continuation consistency’ in the latter.



21

4 Results

We can now formally present the main results of the paper. In Section 4.1 we first identify
and then compare the robustness properties of weak and backward rationalizability on the
one hand, and strong rationalizability on the other. This exercise is revealing about the
the extent to which the interplay between players’ information and their ability to employ
observed behavior to conjecture about future is critically sensitivity to modeling details.
Next, in Section 4.2 we show that, if players are allowed to hold private information that
is ‘too broad’, then usual game-theoretic refinement criteria based on dynamic considera-
tions (e.g., subgame perfection) become innocuous and the resulting analysis, essentially
static. Finally, Section 4.3 establishes that selection arguments based on robustness to per-
turbations of informational assumptions allow for discarding some weakly and backward
rationalizable outcomes, but not for discriminating among strongly rationalizable outcomes.

4.1 Comparative robustness

Our first main result establishes that both weak and backward rationalizability are uni-
versally robust to misspecifications of informational assumptions—or, more formally, that
Wi and Bi are upper-hemicontinuous correspondences in the whole universal type-space.
The first part of the following theorem reinforces the message about the robustness of
weak rationalizability in previous literature, namely, the extension to dynamic settings
of Dekel, Fudenberg and Morris’s (2006) result due to Penta (2012). The former pertains
static settings—where informational assumptions are fully captures by beliefs and therefore
play no role—, and the latter focuses on types-spaces where players hold no information
about other players’ types. In comparison, our result shows that the robustness of weak
rationalizability holds even if players’ information about other players’ information varies
across types, and even if these dependence is perturbed. The second part of the theorem
further supports this positive message by showing that also the predictions of backward
rationalizability satisfy these remarkable demanding robustness criteria:

Theorem 1. Let (E ,T ∗) be a dynamic Bayesian game. Then, for any player i the following
two hold:

1. Wi : T
∗
i ⇒ Si is upper-hemicontinuous.

2. Bi : T
∗
i ⇒ Si is upper-hemicontinuous.

These results are in contrast with the failure of robustness of strong rationalizability
documented in the closing example of Section 2.3. Notably, the mechanics of that violation
of upper-hemicontinuity greatly clarify the main intuition of why analogous problems do
not arise in the case of weak and backward rationalizability. As discussed above, the con-
straints over beliefs placed by the forward inductive logic behind strong rationalizability are
information-dependent: different restrictions apply at each history depending on whether
the information that a player holds allows for making sense of observed behavior or not.
Moreover, as a player may be able to rationalize observed behavior given some particular



22 4 Results

piece of private information of hers, but not as soon as this information is perturbed, it is
easy to come up with examples (as the one in Section 2.3), the aforementioned dependence
on information of is not lower-hemicontinuous. It was precisely this feature what triggered
problems in the upper-hemicontinuity of strong rationalizability: the less demanding the
constraints over the beliefs about others’ rationality are, the wider the range of own behav-
ior that can be sustained. It is then easy to see why weak and backward rationalizability are
immune to this problem. Both solutions concepts place constant constraint over beliefs—in
the case of weak rationalizability, only at the initial history and in the case of backward
rationalizability, at every history. Thus, whether a constraint holds at a history or not is, in
both cases, information-independent, and thus, the lower-hemicontinuity problem cannot
arise. Neither can, in consequence, problems with upper-hemicontinuity.

It is then natural to inquire about the extent to which the the critical sensitivity to
informational assumptions of strong rationalizability is general. Our next results unveils
that the problem is, fortunately, remarkably marginal: while not universally robust, strong
rationalizability is generically robust—it is an upper-hemicontinuous correspondence in an
open and dense subset of the universal type-space. It turns out that the robustness of strong
rationalizability goes beyond: the latters’ predictions are universally robust when restricted
to information-based types and perturbations (the usual ones in economic theory):34

Theorem 2. Let (E ,T ∗) be a dynamic Bayesian game. Then, for any player i the following
three hold:

1. Si : T
∗
i ⇒ Si is generically upper-hemicontinuous.

2. Si|T 0
i
: T 0

i ⇒ Si is upper-hemicontinuous.

While the proof of the result requires to go through several technical steps, the main
intuition behind is rather simple, and related to the crucial role that both the inconsistency
in information and tie in Player 1’s utilities player in the problematic example of Section
2.3. Notice that it is the absolute, persistent certainty of Player 2 on this tie what allows
for perturbing her information so that she becomes convinced that choice a1 of Player 1 is
impossible to make sense of. Formally, this is operationalized by endowing Player 2 with
a type t2 such that, for every t1 consistent with information ∆2(t2), ∆1(t1) = {θ0}—this
θ0 being the payoff-state that includes the tie. Suppose instead that Player 2 was endowed
with a type tn2 with information ∆2(t2) that was consistent with types of Player 1 whose in-
formation about the payoff-state contained some (arbitrarily small) neighborhood of θ0. In
such case, every perturbation of tn2 would have information consistent with types of Player
1 whose information was consistent with payoff-states where the tie in θ0 may be broken in
favor of a1. In consequence, such types tn2 would be immune to the lower-hemicontinuity
problem with the set of histories in which strong rationalizability places constraints on
beliefs. This way, part (1) of Theorem 2 captures the observation that, if strong rationaliz-
ability exhibits some upper-hemicontinuity problem at some type, it suffices with ‘inflating’

34The set of player i’s information-based types, T 0
i , collects all the canonical types of player i that are

consistent with persistent common certainty of correct information about the payoff-state (see Section 3.1).
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this type’s information in arbitrarily small fashion. Part (2) guarantees that this procedure
also works for types that are consistent with common certainty of correct information about
payoff-states, which are, essentially, the only kind of types employed in economics. Now,
while the second result may provide certain alleviation by suggesting that robustness prob-
lems only arise for types that are commonly neglected in practice, we consider that such
an interpretation is overly optimistic. Whereas information-based types are convenient for
for economic modeling (at least in order to avoid trivial explanation of phenomena based
on severe inconsistencies among types), a genuine concern for robustness should account
for severe misspecifications of the informational assumptions presupposed by the analyst—
among them, of course, those related to common persistent belief in information about the
payoff-state being correct. By excluding this possibility, the perturbations allowed for in
part (2) of Theorem 2 pose, in our view, an excessively lenient robustness criterion.

4.2 Impossibility theorem

The robustness problem of strong rationalizability that the example in Section 2.3 illustrates
raises an immediate objection about whether, by relying on very stringent informational
assumptions, such examples have a questionable relevance. These informational assump-
tions required that Player 2 was unable to envision a payoff-state that would explain Player
1’s behavior, and was instead comfortable with the conclusion that Player 1 may not be
rational. It is thus natural to wonder whether sound modeling practice should require play-
ers’ information about other players’ information to be broad enough as to always deems
as possible states that make sense of all possible observed behavior. Next, we explore the
consequences of such a view.

To this end, we first introduce two formal definitions that adapt Weinstein and Yildiz
(2007), Chen (2012) and Penta’s (2012) richness assumption to our setting. Notably, we
can leverage on the informational component in our definition of types to recast said as-
sumptions as a property of individual types, not games:

Definition 6 (Conditional dominance). Let (E ,T ) be a dynamic Bayesian game. Then,
for any player i, any type ti a strategy si is conditionally dominant for ti if, for every
strategy s′i such that s′i(h′) 6= si(h

′) for some history h′ ∈ Hi(si), there exists some history
h ∈ Hi such that, for every s−i ∈ S−i(h) and every θ ∈ ProjΘ∆i(ti),

θi(z((si, s−i)|h)) > θi(z((s
′
i, s−i)|h)).

Definition 7 (Richness). Let (E ,T ) be a dynamic Bayesian game. Then, we say that
type ti is rich if, for every s−i ∈ S−i, there exists some ts−i

−i ∈ ProjT ∗
−i
∆i(ti) such that the

following two hold:

(1) sj is conditionally dominant for ts−i

j for every j 6= i.

(2) (ProjΘ(∆i(ti) ∩Θ× {ts−i

−i }))i = [0, 1]Z .

In words, a strategy is conditionally dominant for a type if, given the type’s information
has about the payoff-state, every behaviorally different strategy (that is, prescribing a
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different choice at some history that both strategies reach) yields unambiguously lower
utilities after some history. Based on this, we say that a type is rich if, for every possible
behavior of others’, it envisions as possible some profile of types of theirs such that: (1)
said behavior is conditionally dominant for the types in this profile, and (2) every possible
utility-function of the player is consistent with this profile. While the second condition is
of mainly technical nature, the first condition captures the essence of a type’s information
being ‘broad’ enough as to make sense of every possible behavior of others’: no matter
which history h player i reaches throughout the game, she can always envision some type
t−i of others for whom reaching h would have been reasonable.

Now, results by Penta (2012) and Chen (2012) show that in dynamic Bayesian games
consisting of type-spaces where every type of every player is rich and basic,35, then no strict
refinement of weak rationalizability is robust. However, we saw in the previous paragraph
that backward rationalizability is robust. Moreover, it is easy to see that for type-spaces
consisting of rich and basic types strong rationalizability is robust too (if perturbations
do not affect information about others’ information, then the set of histories in which
constraints on beliefs are placed cannot exhibit the lower-hemicontinuity problem explained
above), a fact summarized in the following result:

Proposition 2. Let (E ,T ) be a dynamic Bayesian game where every type ti of every player
i basic. Then, for every player i the correspondence ST

i : Ti ⇒ Si is upper-hemicontinuous.

Obviously, backward and strong rationalizability both refine weak rationalizability. The
conclusion is then immediate—under the informational assumptions in Chen (2012) and
Penta (2012) all these solution concepts coincide:

Corollary 1. Let (E ,T ∗) be a dynamic Bayesian game. Then for rich and basic types,
weak, strong, and backward rationalizability coincide; i.e., for any player i and any rich
and basic type ti:

Wi(ti) = Si(ti) = Bi(ti).

We thus reach meaningful conclusions about the limits of game-theoretic modeling in
dynamic environments. Allowing for sufficiently rich information may preclude robustness
problems, but only at the expense of trivializing the bite that accounting for the dynamic
nature of the settings enables for.36 Alternatively, this compelling extra bite is revealed
to crucially rely on restricting, on somewhat ad hoc fashion, players’ ability to rationalize
observed behavior.

35A type of player i is basic if it is consistent with common persistent belief in the event that each player’s
types have the same information about other players’ types (see Section 3.1).

36A similar insight can be found in Battigalli and Siniscalchi (2007) who, in our language, show that by
embedding a dynamic game with complete information into one with payoff-uncertainty by expanding types’
information about the (originally unique) payoff-state to allow for richness, the predictions of weak and
strong rationalizability coincide. Garcia-Galocha, Jaromír Kovářík and Zuazo-Garin (2022) also replicate
this result in the context of higher-order uncertainty about sequential rationality.
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4.3 Selections via perturbations

4.3.1 Structure theorem

Our final main result sheds light on the refining power of equilibrium selection criteria
based on robustness to misspecifications of players’ higher-order information and beliefs.
The main idea behind these techniques is based on creating contagion arguments that
favor endogenous equilibrium coordination. As a sketchy illustration, consider a complete-
information game with two symmetric players where (a, a) is one (of possibly many) Nash
equilibrium, and introduce diminishing payoff-uncertainty as follows: there is a type t1 of
players for whom a is strictly dominant and thus, the only rationalizable choice for t1;
there is a type t2 of players whose first-order beliefs are as in the complete-information
benchmark case and who assigns probability 1 type t1 of the other player, so that a is
the only rationalizable choice for t2; . . . ; there is a type tk+1 of players whose kth-order
beliefs are as in the complete-information benchmark case and who assigns probability 1
type tk of the other player, so that a is the only rationalizable choice for tk+1; . . . . It
seems then that perturbing arbitrarily high-order beliefs (even if leaving lower-order beliefs
intact) can suffice for triggering a contagion that makes a uniquely rationalizable along the
whole perturbation—regardless of how much the complete information benchmark case is
approximated. This intuition has been operationalized with remarkable success by global
games. These represent situations with payoff-uncertainty where, for type-profiles consis-
tent with complete information the Nash equilibria are multiple and, by perturbing these
types’ higher-order beliefs via small asymmetries of information, only one equilibrium is
selected. Weinstein and Yildiz (2007) raise a criticism to this approach by showing that, in
static games with payoff-uncertainty, every outcome that is consistent with rationalizability
in the interim normal-form of the game can be uniquely selected by an appropriate pertur-
bation. In consequence, no rationalizable outcome—let alone equilibrium outcome—should
deserve special preponderance on the basis of being possible to select by some perturbation
of higher-order beliefs. Chen (2012) and Penta (2012) provide certain extensions of this
insight to dynamic games. However, since their results only hold under rather stringent
informational assumptions (that there are no information asymmetries about other play-
ers’ information and the residual payoff-relevant component), the severity of Weinstein and
Yildiz’s (2007) critique to the refinement program in dynamic games remains unclear.

Before discussing the findings that address the problem above, let us be more precise
and formally define first when do the predictions of a solution concepts admit to be selected
via a perturbation:

Definition 8 (Unique selections via weak rationalizability). Let (E ,T ∗) be a dynamic
Bayesian game, let t be a profile of types, and let I = (Ii)i∈I be a profile of interim solution
concepts. Then, we say that the predictions of I for type-profile t admit unique selections via
weak rationalizability if, for every s ∈ I(t) there exists a sequence of type-profiles (tn)n∈N

converging to t such that, for every n ∈ N and every sn ∈ W(tn),

z(s|h0) = z(sn|h0)
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In words, the predictions of a solution concept for a given specification of types can be
uniquely selected by a perturbation when, for each z among these outcomes, it is possible
to find a sequence that approximates the benchmark type-profile in a way that, for each
component of the sequence, the unique prediction of weak rationalizability is z. Given
this, and as explained below, the theorem and remark (based on the counterexample in the
next paragraph) below provide answers to the scope of the Weinstein and Yildiz critique in
dynamic games:

Theorem 3. Let (E ,T ∗) be a dynamic Bayesian game and let t be a consistent profile of
finite, information-based types. Then, the predictions of strong rationalizability for t admit
unique selections via weak rationalizability.

Remark 1. There exists some dynamic Bayesian game (E ,T ∗) and a consistent profile
of finite, information-based types t whose backward rationalizable predictions do not admit
unique selections. In particular, neither do those of weak rationalizability.

That is, in dynamic games, every strongly rationalizable outcome can be uniquely se-
lected by some perturbation, (almost) regardless of the informational assumptions set by the
analyst and even the absence of richness assumptions over types’ information. To guarantee
this flexibility of information, we leverage on the fact that perturbing types’ informational
components allows for approximating, for instance, settings with persistent common belief
in no information using types that may exhibit some belief, possibly at the higher-orders,
in the presence of private information. Furthermore, as we show via an example in the next
paragraph, not all backward rationalizable outcomes can be uniquely selected this way. As
a result, on the one hand, we show that informational assumptions do not constitute some
barrier for the Weinstein and Yildiz critique: unique selections are possible (almost) in
the absence of specific informational assumptions. On the other, this possibility excludes
some backward rationalizable outcomes—and thus, also some weakly rationalizable ones.
These observations provide two main insights into the open question about the Weinstein
and Yildiz critique of refinements through perturbations. First, in settings where strongly
rationalizable predictions refine weakly rationalizable ones and are consistent with some
equilibrium outcome, selection criteria based on robustness to perturbations do have some
bite, and this is regardless of informational assumptions. Second, these selection criteria
remain subject to the Weinstein and Yildiz critique when applied to discriminating between
equilibrium predictions consistent with strong rationalizability.

Some additional clarifications about Theorem 3 are in order. First, while our theorem
does not require types to be rich, richness does play a crucial role in the perturbation,
which is based on a standard contagion argument à la Email game. Now, the latter does
not crucially compromise the generality of the former. If the profile of types to be per-
turbed was required to satisfy richness assumptions, then, by virtue of Corollary 1, the
result would only be applicable to settings where dynamic refinements add no bite. Our
result, on the contrary, is of broad scope: it applies to predictions within every dynamic
game with finite extensive-form and, loosely speaking, irrespective of which type profile is
chosen. Second, precisely because we do not require richness assumptions, our selection
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argument applies to outcomes, not profiles of strategies. This is due to the fact that, in
the absence of richness, it is impossible to ‘propagate’ initial beliefs to every history of
the game—reaching some histories in a strongly rationalizable way may be impossible and
hence a zero probability event. Third, as mentioned above, our result allows for unique
selections of strongly rationalizable outcomes, and we document via a counterexample that
analogous selections are not always possible for backwards rationalizable (and hence weakly
rationalizable) predictions. Finally, together with the upper-hemicontinuity of backward
rationalizability, Theorem 1 provides a new proof of a well known result:37

Corollary 2 (c.f. Battigalli, 1996, Chen and Micali, 2013, Perea, 2018a). Let (E ,T ∗)

be a dynamic Bayesian game and let t be a consistent profile of finite, information-based
types. Then, the strongly rationalizable predictions given t are contained in the backward
rationalizable predictions given t.

4.3.2 Counterexample for backward rationalizability

The following example illustrates the claim above about not every backward rationalizable
prediction admitting a perturbation of information that uniquely selects it. Consider the
following dynamic game with utility-functions parametrized by payoff-states θ1 and θ2:

1 2 1

4

4

3
3

0
0

2
2

a1

b1

a2

b2

a3

b3

Payoff-state θ1

1 2 1

0

0

3
0

1
1

2
2

a1

b1

a2

b2

a3

b3

Payoff-state θ2

Suppose in addition that Player 1 always knows the payoff-state, that Player 2 never knows
it, and that these two are common knowledge. The set of backward rationalizable strategies
of Player 2 for arbitrary type t2 is:

(A) {a2}, if t2 assigns positive probability to θ2. At state θ2 strategy (a1; a3) is strictly
dominant for player 1 (who, remember, knows that the state is θ1). Thus, if player 2

observes that player 1 advances in her first round, she updates her beliefs by excluding
the possibility of θ1 being the true state. In consequence, a2 becomes her only rational
choice.

(B) {a2, b2}, if t2 assigns null probability to θ2. In this case it is unexpected for player
2 to observe player 1 advance, b1 would have been strictly dominant if the state had
been θ1. Thus, player 2 needs to perform an update of her beliefs from scratch, what
allows for the following two possibilities: Was choosing a1 a mistake and, effectively,

37It is worth noting that the first proof relating strongly and backward rationalizable outcomes, due
to Battigalli (1997), relied on strategic stability à la Kohlberg and Mertens (1986), a notions based on
robustness to perturbations. While the perturbations that we consider are of different nature, and with an
unclear connection with those employed for strategic stability, the analogy does not seem coincidental.
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the state is θ1? Or where player 2’s beliefs wrong and the state is θ2, what justifies
player 1’s decision to advance? Both updating alternatives (and the corresponding
mixed beliefs) are admissible according to backward rationalizable reasoning, and the
corresponding only rational choices are b2 and a2, respectively (and one or either of
them, if the updated is a mixed belief).

Pick now model M := ((∆1, τ1), (∆2, τ2)), where (i) ProjΘ∗(∆i) = {θ1, θ2} and (ii) τ1 and
τ2 represent initial common belief in states θ2 and θ1, respectively. We claim now that no
perturbation of M can lead to b2 being uniquely selected for player 2 and thus, to outcome
(a1, b2) (which is backward rationalizable for M) being uniquely selected. To see it notice
first that if a subset of states is close enough that of ∆i then it can be written as the
disjoint union of two sets of states, Θ1 and Θ2, such that it is strictly dominant for player
1 to choose b1 at every θ′1 ∈ Θ1 and to choose (a1; a3) at every θ′2 ∈ Θ2. Accordingly, for
any perturbation of (∆2, t2), the same argument as in (A) and (B) leads to the following
conclusions: (A’) if in the perturbed model Θ2 gets positive probability then a2 is player 2’s
unique backward rationalizable strategy, and (B’) if in the perturbed model Θ2 gets zero
probability then both a2 and b2 are backward rationalizable for player 2. As a result, there
is no perturbation of M in which a2 is not backward rationalizable for player 2.

5 Related literature

Our approach bears some similarity with the notion of unawareness (see Fagin and Halpern,
1988; Modica and Rustichini, 1994), and in particular with the state-space or semantic
approach to modeling awareness (see Dekel, Lipman and Rustichini, 1998; Heifetz, Meier
and Schipper, 2006, 2008; Piermont, 2019), in which agent’s are endowed with a coarse
understanding of the true space of uncertainty. In particular, these approaches often model
uncertainty via a partial order of increasingly expressive state-spaces: agent’s residing in
more expressive state-spaces can only reason about events in lower state-spaces. Agents who
are introspectively unaware, however, might reason that there exist contingencies they are
unaware of, without, of course, knowing exactly what such contingencies entail (see Halpern
and Rêgo, 2009; Halpern and Piermont, 2019). The informational components of our type-
spaces can capture both naive and introspective unawareness by changing restrictions on the
relation between ∆i(ti) and the ∆j(tj) that each tj consistent with ∆i(ti) holds: when the
projection on Θ of ∆i(ti) is required to contain the one of ∆j(tj) then the agent i is naively
unaware, as he does not consider it possible that j considers a contingency he does not.
Note, most game-theoretic analyses of unawareness—Heifetz, Meier and Schipper (2014),
Perea (2018b) and Guarino (2020), for instance—have focused on unawareness w.r.t. actions
or strategies, not payoff states.

Relaxation of common knowledge of type-spaces has also been studied by Ziegler (2019)
and Guarino and Ziegler (2022), and alternative misspecifications of models, by Esponda
and Pouzo (2016) and, in the context of macroeconomic models, Hansen and Sargent (2001)
and Cho and Kassa (2017). The study of disagreements about payoff-states and informa-
tional components follows the literature on how small changes in beliefs and information
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at high orders affects strategic behavior. Rubinstein’s (1989) email game documents that
behavior under common knowledge or under almost common knowledge can vary drasti-
cally. Later, Weinstein and Yildiz (2007) show that these discontinuities of behavior are
not an isolated phenomenon, but rather, a pervasive feature of games with incomplete in-
formation. Penta (2012) and Chen (2012) extend this observation to dynamic games. Ely
and Pe�ski (2011) and Ruiz G. (2018) characterize the types in which these discontinuities
arise in static and dynamic settings, respectively. Penta and Zuazo-Garin (2022) study the
strategic impact of the discontinuities corresponding to higher-order uncertainty about the
observability of choices, not preferences. Within the literature of robust mechanism design,
Oury and Tercieux (2012) and Chen, Mueller-Frank and Pai (2020) study which social
choice functions are implementable is a way robust to small misspecifications of higher-
order beliefs. To this respect, the new notion of continuity in this paper and our results on
the continuity of different solution concepts suggest novel questions and techniques for the
study of implementability in dynamic mechanism design.

The counterintuitive nature behind the the stark discontinuities of behavior on infor-
mation has sprung a literature arguing that these phenomenon is an artifact of very specific
formalization or unrealistic assumptions on behavior. An approach consists in varying the
notions of ‘similarity’ of belief hierarchies or ‘approximation’, as studied by Dekel, Fuden-
berg and Morris (2006), Chen, Di Tillio, Faingold and Xiong (2010; 2017) or Morris, Shin
and Yildiz (2016). Another approach consists in showing that these discontinuities van-
ish with the introduction of bounded rationality and, specifically, under arbitrarily small
departures from the benchmark of rationality and common belief thereof, as in Strzalecki
(2014), Heifetz and Kets (2018), Germano, Weinstein and Zuazo-Garin (2020), Murayama
(2020) or Jimenez-Gomez (2019). On the contrary, the literature on global games, starting
from Carlsson and van Damme (1993), has embraced the discontinuities as an intrinsic fea-
ture of strategic behavior and leveraged on them to explain diverse economic phenomena
such as currency crises (Morris and Shin, 1998), bank runs (Angeletos, Hellwig and Pavan,
2006; 2007), conflict (Baliga and Sjöström, 2012), overvaluation in financial markets (Han
and Kyle, 2017) or disclosure policies for stress tests (Inostroza and Pavan, 2018).
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A Type-spaces

A.1 Preliminaries

Definition 9 (Type-space). Let I be a finite set. Then, a type-space is a list T = (Θi, Ti,∆i, τi)i∈I

where, for each i ∈ I, we have:

1. A compact Polish space Θi.

2. A compact Polish set Ti.

3. A continuous correspondence with nonempty and compact values ∆i : Ti ⇒ Θi × T−i, where
T−i :=

∏
j ̸=i Tj.

4. A continuous map τi : Ti → ∆(Θi × T−i) where τi(ti) [∆i(ti)] = 1 for every ti ∈ Ti.

Definition 10 (Completeness). A type-space T = (Θi, Ti,∆i, τi)i∈I is complete if, for every i ∈ I,
the following map is surjective:

Ti −→ {(Ki, βi) ∈ 2Θi×T−i ×∆(Θi × T−i)|Ki is nonempty and compact, and βi[Ki] = 1}

ti 7→ (∆i(ti), τi(ti))

Definition 11 (Terminality). Let I be a finite set of players. Then, type-space T = (Θi, Ti,∆i, τi)i∈I

is terminal if, for every type-space T = (Θ̃i, T̃i, ∆̃i, τ̃i)i∈I where Θ̃i ⊆ Θi for every player i, there
exists, for every player i, a continuous map ϕi : T̃i → Ti such that, for every type t̃i ∈ T̃i the
following two hold:

(1) ∆i(ϕi(t̃i)) = {(θ̃i, (ϕj(t̃j))j ̸=i)|(θ̃i, t̃−i) ∈ ∆̃i(t̃i)}

(2) τi(ϕi(t̃i))[E] = τ̃i(t̃i){(θ̃i, (t̃j)j ̸=i) ∈ Θ̃i × T̃−i|(θ̃i, (ϕj(t̃j))j ̸=i) ∈ E} for every measurable
E ⊆ Θi × T−i.

A.2 Universal type-space

A.2.1 The space of all hierarchies of models

Fix a set of player I and, for each player i, a compact Polish set of basic uncertainty Θi. We will
now construct a type-space:

T ∗ = (Θi,∆
∗
i , τ

∗
i )i∈I

that plays the role of a universal type-space in our analysis:

Set of types. Player i’s set hierarchies of models is:

T ∗
i :=

{
(µk

i )k∈N

∣∣ (µ1
i , . . . , µ

k
i ) ∈Mk

i for every k ∈ N
}
,

where each Mk
i is player i’s set of kth-order models and is defined inductively via the process that

we detail next (Lemma 1 guarantees that the following steps are sound):

• First-order models. Set first M0
−i := Θi for each i ∈ I and then, define the latter’s set of

first-order models as:

M1
i :=

{
(∆1

i , τ
1
i ) ∈ 2M

0
−i ×∆(M0

−i)

∣∣∣∣∣ (1) ∆1
i 6= ∅ is compact

(2) τ1i [∆
1
i ] = 1

}
.
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Set M1
−i :=

∏
j ̸=iM

1
j and, for every µ1

i = (∆1
i , τ

1
i ) ∈M1

i , define:

∆1
i (µ

1
i ) := ∆1

i and τ1i (µ
1
i ) := τ1i .

• Higher-order models. For each k ≥ 1 and for each i ∈ I define the latter’s set of (k+1)th-order
models as:

Mk+1
i :=


(µk

i , (∆
k+1
i , τk+1

i )) ∈Mk
i × 2M

k
−i ×∆(Mk

−i)

∣∣∣∣∣∣∣∣∣∣∣

(1) ∆k+1
i 6= ∅ is compact,

(2) τk+1
i [σk+1

i ] = 1,

(3) ProjMk
i
∆k+1

i = ∆k
i (µ

k
i ),

(4) margMk
i
τk+1
i = τki (µ

k
i )


.

and set Mk+1
−i :=

∏
j ̸=iM

k+1
j and, for every µk+1

i = (∆k+1
i , τk+1

i ) ∈Mk+1
i , define:

∆k+1
i (µk+1

i ) := ∆k+1
i and τk+1

i (µk+1
i ) := τk+1

i .

Given T ∗
i , we denote T ∗

−i :=
∏

j ̸=i T
∗
j and define, for each hierarchy of of models ti = (µk

i )k∈N:

∆i(ti) := (∆k
i (ti))k∈N := (∆k

i (µ
k
i ))k∈N and τi(ti) := (τki (ti))k∈N := (τki (µ

k
i ))k∈N.

Lemma 1. T ∗
i is well-defined, and compact Polish.

Proof. Let us introduce some auxiliary notation first. For each player i set Ô1
i := K(Θ)×∆(Θ) and

M̄1
i := Ô1

i , and then, define inductively:

Ôk+1
i := K(M̄k

−i)×∆(M̄k
−i) and M̄k+1

i := M̄k
i × Ôk+1

i ,

where M̄k
−i =

∏
j ̸=i M̄

k
j for every k ≥ 1. For every player i, Ôk

i is compact Polish for every k ∈ N.
Set now, for each player i, M̂0

i =
∏

k∈N Ô
k
i , and, for every k ∈ N,

M̂k
i :=Mk

i ×
∏
ℓ>k

Ôℓ
i .

Notice that M̂0
i is compact Polish and Hausdorff.

Then, we proceed by induction on k ≥ 0. It is trivially true that, for k = 0, M̂k
i is compact

Polish for every player i, so pick k ≥ 0 and let us check that if M̂k
i is compact Polish for every

i then so is M̂k+1
i . For every i, that M̂k

i is compact Polish implies that Mk
i is compact Polish

and thus, it follows that both K(Mk
−i)×∆(Mk

−i) and hence Mk
i ×K(Mk

−i)×∆(Mk
−i) are compact

Polish as well. Since Mk+1
i is a closed subset of the latter, we conclude that it is compact Polish

and, in consequence, that so is M̂k+1
i . Now, notice that we have both (a) T ∗

i =
⋂

k∈N M̂
k
i and (b)

M̂k
i ⊆ M̂0

i for every k ∈ N. Then, T ∗
i is a countable intersection of compact and Polish subspaces

of a Hausdorff space. Thus, T ∗
i is compact Polish. ■

Possibility-correspondence. Player i possibility-correspondence is ∆∗
i : T ∗

i ⇒ Θi×T ∗
−i, where:

∆∗
i (ti) :=

{
(θi, t−i) ∈ Θi × T ∗

−i

∣∣ θi ∈ ∆1
i (ti) and (∆k

−i(t−i), τ
k
−i(t−i)) ∈ ∆k+1

i (ti) for every k ∈ N
}
.

Lemma 2. ∆∗
i is surjective and continuous with nonempty and compact values.
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Proof. For each k ∈ N define correspondence ∆̂k
i : T ∗

i ⇒ Θi×
∏

j ̸=i M̂
0
j by setting, for each ti ∈ T ∗

i ,

∆̂k
i (ti) := ∆k

i (ti)×
∏
j ̸=i

∏
ℓ>k

Ôℓ
j .

Obviously, ∆̂k
i is nonempty-valued, compact-valued and continuous for every k ∈ N, and it holds

that:
∆∗

i (ti) =
⋂
k∈N

∆̂k
i (ti).

Now, since Θi×T ∗
−i is compact Polish, we know that (1) the compactness of every ∆̂k

i (ti) implies the
compactness of ∆∗

i (ti), and (2) the fact that collection {∆̂k
i (ti)| k ∈ N} satisfies the finite intersection

property implies that ∆∗
i (ti) is nonempty. That ∆∗

i is upper-hemicontinuous follows from the fact
that every ∆̂k

i is continuous. To see that ∆∗
i is lower-hemicontinuous fix ti ∈ T ∗

i and open set
Vi ⊆ Θi × T ∗

−i where Vi ∩∆i(ti) 6= ∅. Since Vi is open in Θi × T ∗
−i we know that there exist:

• Some V ′
i ⊆ Θi × M̂0

−i where Vi = V ′
i ∩Θi × T ∗

−i.

• Some k ∈ N and some open Wi ⊆ Θi ×
∏

j ̸=i

∏k
ℓ=1 Ôℓ

j such that V ′
i :=Wi ×

∏
j ̸=i

∏
ℓ>k Ôℓ

j .

Now, since ∆̂k
i is lower-hemicontinuous we know that there exists some open Ui ⊆ T ∗

i such that
Wi ∩ ∆̂k

i (t
′
i) 6= ∅ for every t′i ∈ T ∗

i . It follows that, for every t′i ∈ Ui, Vi ∩ ∆∗
i (t

′
i) 6= ∅ and hence,

that ∆∗
i is lower-hemicontinuous. Finally, to see that ∆∗

i is surjective pick arbitrary nonempty and
compact Ki ⊆ Θi × T ∗

−i and set ∆i = (∆k
i )k∈N were ∆k

i := projÔk
i
Ki for every k ∈ N. Obviously,

there exists some ti ∈ T ∗
i such that ∆k

i (ti) = ∆k
i for every k ∈ N and hence, such that ∆∗

i = Ki. ■

Belief-map. Define first the following set:

T̂ ∗
i :=

ti = (∆k
i , τ

k
i )k∈N ∈ M̂0

i

∣∣∣∣∣∣∣∣
(1) τki [∆

k
i ] = 1

(2) For every k ∈ N, ProjM̄k
−i
∆k+1

i = ∆k
i

(3) For every k ∈ N, margM̄k
−i
τk+1
i = τki

 .

Then extend map τi above to T̂ ∗
i by defining τ̂i : T̂ ∗

i →
∏

k∈N ∆(M̄k
−i) as follows:

(∆k
i , τ

k
i )k∈N 7→ (τki )k∈N.

The Kolmogorov Extension Theorem guarantees the existence of a unique map gi : τ̂i(T̂
∗
i ) →

∆(Θi × M̂0
−i) such that margM̄k

−i
gi((τ

k
i )k∈N) = τki —a property that, in turn, implies the continuity

of gi. Given all the above, define map τ∗i : T ∗
i → ∆(Θi × T ∗

−i) as follows:

τ∗i := gi|τi(T∗
i ) ◦ τi.

Lemma 3. τ∗i is surjective, continuous and satisfies the following two for every ti ∈ T ∗
i :

(1) τ∗i (ti)[∆
∗
i (ti)] = 1

(2) margMk
−i
τ∗i (ti) = τk+1

i (ti) for every k ≥ 0

Proof. To see that τ∗i pick βi ∈ ∆(Θi × T ∗
−i) and define β∞

i := (βk
i )k∈N where βk

i := margMk
−i
βi for

every k ∈ N. Obviously, β∞
i ∈ τi(T

∗
i ) and, obviously as well, τ∗i (ti) = βi for every ti ∈ τ−1

i (β∞
i ).

The continuity of τ∗i follows from the obvious facts that both gi and τi are continuous. That (2)
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holds is immediate. To see that (1) holds fix ti = (∆k
i , τ

k
i )k∈N ∈ T ∗

i and notice that, for every k ∈ N

we have that τki [∆k
i ] = 1, and thus, also that:

margMk
−i
τ∗i (ti)[ProjMk

−i
∆∗

i (ti)] = τ∗i (ti)
[
∆̂k

i (ti)
]
= 1,

what clearly implies that τ∗i (ti)[∆∗
i (ti)] = 1. ■

A.2.2 Universality of the space of all hierarchies of models

Proposition 3. Let I be a finite set and, for each i ∈ I, let Θi be a compact Polish set. Then, the
type-space T ∗ = (Θi, T

∗
i ,∆

∗
i , τ

∗
i )i∈I as defined above is complete and terminal.

Proof. To verify completeness pick arbitrary pair (Ki, βi) where Pi is a nonempty and compact
subset of Θi × T ∗

−i and βi ∈ ∆(Θi × T ∗
−i) satisfies that βi[Ki] = 1. Then, define, for every k ∈ N

the following two objects:

• Kk
i := ProjMk

−i
Ki.

• βk
i := margMk

−i
βi.

Then, the completeness of T ∗ follows from the immediate fact that ti := (Kk
i , β

k
i )k∈N is an

element of T ∗
i such that ∆∗

i (ti) = Ki and τ∗i (ti) = βi. To verify terminality fix type-space
T = (Θ′

i, Ti,∆i, τi)i∈I where Θ′
i ⊆ Θi for every player i. The, for every player i and every ti ∈ Ti

define first:

• K1
i (ti) := ProjΘ′

i
∆i(ti)

• β1
i (ti)[E] := margΘ′

i
τi(ti)[E ∩Θ′

i] for every measurable E ⊆ Θi.

and set X1
−i :=

∏
j ̸=i(K

1
j × β1

j )(Tj). Then, define recursively:

• Kk+1
i (ti) := ProjXk

−i
∆i(ti)

• βk+1
i (ti)[E] := margXk

−i
τi(ti)[E ∩Xk

−i] for every measurable E ⊆ Mk
−i.

and set Xk+1
−i :=

∏
j ̸=i(K

k+1
j × βk+1

j )(Tj). It should be noted that maps ϕk+1,T
i : Ti → Xk

−i given
by ti 7→ (Kk

i (ti), β
k
i (ti)) are continuous and open, by virtue of projection and marginalization being

continuous and open.38 Finally, for each player i, define map ϕT
i : Ti → T ∗

i by setting:

ϕT
i (ti) := (Kk

i (ti), β
k
i (ti))k∈N

for every ti ∈ Ti. Obviously, ϕT
i is continuous, and satisfies properties (1) and (2) in 11. Thus, we

conclude that T ∗ is terminal. ■

A.3 Type-space invariance

A.3.1 Auxiliary definitions

Definition 12 (Interim solution concept). Let E be an extensive-form and let i be a player. Then,
an interim solution concept Ii for player i is a mapping that associates each pair (T , ti), where T

is a type-space and ti is a type of player i, with a subset of i’s strategies IT
i (ti) ⊆ Si.

38Continuity is obvious, and so is the openness of projections. For openness of marginalization see Ditor
and Eifler (1972).
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Definition 13 (Robustness). Let E be an extensive-form and let i be a player. Then, an interim
solution concept Ii for player i is robust if, for every type-space T the correspondence IT

i : Ti ⇒ Si

is upper-hemicontinuous.

Definition 14 (Type-space invariance). Let E be an extensive-form and let i be a player. Then,
an interim solution concept Ii for player i is type-space invariant if, for every type-space T and
every type ti,

IT
i (ti) = IT ∗

i (ϕT
i (ti)).

A.3.2 Auxiliary lemmas

Lemma 4. Let (E , T ∗) be a dynamic Bayesian game, let i be a player and let (I)j ̸=i be a partial
profile of type-space invariant interim solution concepts. Then, for any type-space T , any type
ti ∈ Ti and any conjecture µi ∈ CT

i (ti) there exists some conjecture µ∗
i ∈ CT ∗

i (ϕT
i (ti)) such that

ri(µ
∗
i = ri(µi) and the following three hold:

1. If µi displays initial belief in IT
−i, then µ∗

i displays initial belief in IT ∗

−i .

2. If µi displays strong belief in IT
−i, then µ∗

i displays strong belief in IT ∗

−i .

3. If µi displays future belief in IT
−i, then µ∗

i displays future belief in IT ∗

−i .

Proof. Fix conjecture µi ∈ CT
i (ti). Then, we define µ∗

i in four steps:

• First, define map ψT
i : S−i ×Θ → S−i ×Θ∗ as follows:

(s−i, θ, t−i) 7→ (s−i, θ, (ϕ
T
j (t−i))j ̸=i).

Obviously, ψT
i is continuous.

• Now, let Hi(µi) collect the set of histories in Hi ∪{h0} where µi updates beliefs from scratch:

Hi(µi) :=

{
h ∈ Hi ∪ {h0}

∣∣∣∣∣ For every h′ ∈ Hi ∪ {h0} s.t. S−i(h
′) ⊆ S−i(h):

margS−i
µi(h

′)[S−i(h)] = 0

}

• Then, for every h ∈ Hi(µi) and every event E−i ⊆ S−i ×Θ∗ × T ∗
−i set:

µ∗
i (h)[E−i] = µi(h)

[
(ψT

i )−1(E−i)
]
.

The continuity of each ψT
i guarantees that the above is well-defined.

• For every h /∈ Hi(µi) define µ∗
i (h) via conditional probability.

Obviously, µ∗
i := (µ∗

i (h))h∈Hi∪{h0} is a well-defined element of CT ∗

i (ϕT
i (ti)) and furthermore, the

marginals on S−i × Θ∗ of µ∗
i (h) and µi(h) coincide for every h ∈ Hi ∪ {h0}. It follows from the

latter that ri(µ∗
i ) = ri(µ

∗
i ). Now, notice that the following facts hold:

(F0) For every pair of measurable events E−i ⊆ S−i × Θ∗ × T−i and F−i ⊆ S−i × Θ∗ × T ∗
−i such

that (ψT
i )−1(E−i) ⊆ F−i and every history h ∈ Hi ∩ {h0}, if there exists some measurable

M ⊆ E−i such that µi(h)[M ] = 1 then there exists some measurable M∗ ⊆ ψ−1
i (F−i) such

that µ∗
i (h)[M

∗] = 1.

(F1) Since every Ij is type-space invariant, then, among the following two sets, the first one is
included in the second:

Θ∗ × Graph(IT
−i) = Θ∗ ×

{
(s−i, t−i) ∈ S−i × T−i

∣∣s−i ∈ IT
−i(ti)

}
,
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(ψT
i )−1

(
Θ∗ × Graph(IT ∗

−i )
)
= Θ∗ ×

(s−i, t−i) ∈ S−i × T−i

∣∣∣∣∣∣s−i ∈
∏
j ̸=i

IT ∗

j (ϕT
j (tj))

 .

(F2) Since every Ij is type-space invariant, then, for every h ∈ Hi ∪ {h0}

S−i(h)×∆i(ti) ∩Θ∗ × Graph(IT
−i) 6= ∅ ⇐⇒ S−i(h)×∆∗

i (ϕ
T
i (ti)) ∩Θ∗ × Graph(IT ∗

−i ) 6= ∅.

(F3) Since every Ij is type-space invariant, then, among the following two sets, for every h ∈
Hi ∪ {h0} the first one is included in the second:[

Θ∗ × Graph(IT
−i)
]
h
= Θ∗ ×

{
(s−i, t−i) ∈ S−i × T−i

∣∣[s−i]h ∩ IT
−i(t−i) 6= ∅

}
,

(ψT
i )−1

([
Θ∗ × Graph(IT ∗

−i )
]
h

)
= Θ∗ ×

(s−i, t−i) ∈ S−i × T−i

∣∣∣∣∣∣[s−i]h ∩
∏
j ̸=i

IT ∗

j (ϕT
j (tj)) 6= ∅

 .

Then, claim 1 in the lemma follows directly from (F0) and (F1), claim 2 follows from (F0), (F1)
and (F2), and claim 3 follows from (F0), (F1) and (F3). ■

Lemma 5. Let (E , T ∗) be a dynamic Bayesian game, let i be a player and let (I)j ̸=i be a partial
profile of robust, type-space invariant interim solution concepts. Then, for any type-space T , any
type ti ∈ Ti and any conjecture µ∗

i ∈ CT ∗

i (ϕT
i (ti)) there exists some conjecture µi ∈ CT

i (ti) such
that ri(µi) = ri(µ

∗
i ) and the following three hold:

1. If µ∗
i displays initial belief in IT ∗

−i then µi displays initial belief in IT
−i.

2. If µ∗
i displays strong belief in IT ∗

−i then µi displays strong belief in IT
−i.

3. If µ∗
i displays future belief in IT ∗

−i then µi displays future belief in IT
−i.

Proof. Fix conjecture µ∗
i ∈ CT ∗

i (φT
i (ti)). Then, we define µi in four steps:

• First, define correspondence φT
i : S−i ×Θ× T ∗

−i ⇒ S−i ×Θ∗ × T−i as follows:

(s−i, θ, t−i) 7→ (ψT
i )−1(s−i, θ, (t−i).

Notice that φT
i is weakly measurable. To see it, notice that for every open V ⊆ S−i×Θ∗×T−i

we have that:{
(s−i, θ, t−i) ∈ S−i ×Θ∗ × T ∗

−i|φT
i (s−i, θ, t−i) ∩ V 6= ∅

}
= ψT

i (V ),

and that:

ψT
i (V ) =

⋂
k∈N

{
(s−i, θ, t−i) ∈ S−i ×Θ∗ × T ∗

−i

∣∣∣((∆k
j (tj), τ

k
j (tj))j ̸=i ∈ Θ× ϕk,T−i (V )

}
.

The fact that every ϕk,Ti is an open guarantees then that ψT
i (V ) is measurable. The weak

measurability of φT
i follows then. We know then by the Kuratowski and Ryll-Nardzewski

Selection Theorem that φT
i admits a measurable selector σT

i : S−i ×Θ× T ∗
−i ⇒ S−i ×Θ∗ ×

T−i.39

39That is, σi is measurable and such that σT
i (s−i, t−i, t

∗
−i) ∈ φT

i (s−i, θ, t−i) for every (s−i, θ, t−i) ∈
S−i ×Θ∗ × T ∗

−i.
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• Now, let Hi(µi) collect the set of histories in Hi∪{h0} where µ∗
i updates beliefs from scratch:

Hi(µ
∗
i ) :=

{
h ∈ Hi ∪ {h0}

∣∣∣∣∣ For every h′ ∈ Hi ∪ {h0} s.t. S−i(h
′) ⊆ S−i(h):

margS−i
µ∗
i (h

′)[S−i(h)] = 0

}

• Then, for every h ∈ Hi(µ
∗
i ) define µi(h) ∈ ∆(S−i×Θ∗×T−i) by setting, for every measurable

E ⊆ S−i ×Θ∗ × T−i:
µi(h)[E] := µ∗

i (h)[(σ
T
i )−1(E)].

• For every h /∈ Hi(µ
∗
i ) define µi(h) via conditional probability.

Obviously, µi := (µi(h))h∈Hi∪{h0} is a well-defined element of CT
i (ti) and furthermore, the marginals

on S−i × Θ∗ of µi(h) and µ∗
i (h) coincide for every h ∈ Hi ∪ {h0}. It follows from the latter that

ri(µ
∗
i ) = ri(µ

∗
i ). Now, notice that the following facts hold:

(F0) For every pair of measurable events E−i ⊆ S−i × Θ∗ × T ∗
−i and F−i ⊆ S−i × Θ∗ × T−i such

that (σT
i )−1(E−i) ⊆ F−i and every history h ∈ Hi ∩ {h0}, if there exists some measurable

M∗ ⊆ E−i such that µ∗
i (h)[M ] = 1 then there exists some measurable M ⊆ σ−1

i (F−i) such
that µi(h)[M ] = 1.

(F1) Since every Ij is type-space invariant, then, among the following two sets, the first one is
included in the second:

Θ∗ × Graph(IT ∗

−i ) = Θ∗ ×
{
(s−i, t−i) ∈ S−i × T ∗

−i

∣∣∣s−i ∈ IT ∗

−i (t−i)
}
,

(σT
i )−1

(
Θ∗ × Graph(IT

−i)
)
= Θ∗ ×

(s−i, t−i) ∈ S−i × T ∗
−i

∣∣∣∣∣∣s−i ∈
∏
j ̸=i

IT
j (σT

Tj
(tj))

 ,

where (s−i, θ, (σ
T
Tj
(tj))j ̸=i) = σT

i (s−i, θ, t−i) for every (s−i, θ, t−i) ∈ S−i ×Θ∗ × T ∗
−i.

(F2) Since every Ij is type-space invariant, then, for every h ∈ Hi ∪ {h0}

S−i(h)×∆i(ti) ∩Θ∗ × Graph(IT
−i) 6= ∅ ⇐⇒ S−i(h)×∆∗

i (ϕ
T
i (ti)) ∩Θ∗ × Graph(IT ∗

−i ) 6= ∅.

(F3) Since every Ij is type-space invariant, then, among the the following two sets, for every
h ∈ Hi ∪ {h0} the first one is included in the second:[

Θ∗ × Graph(IT ∗

−i )
]
h
= Θ∗ ×

{
(s−i, t−i) ∈ S−i × T ∗

−i

∣∣∣[s−i]h ∩ IT ∗

−i (t−i) 6= ∅
}
,

(σT
i )−1

([
Θ∗ × Graph(IT

−i)
]
h

)
= Θ∗ ×

(s−i, t−i) ∈ S−i × T ∗
−i

∣∣∣∣∣∣[s−i]h ∩
∏
j ̸=i

IT ∗

j (σT
Tj
(tj)) 6= ∅

 .

Then, claim 1 in the lemma follows directly from (F0) and (F1), claim 2 follows from (F0), (F1)
and (F2), and claim 3 follows from (F0), (F1) and (F3). ■

A.3.3 Proof of Proposition 1

Proposition 1. Let (E ,T ) be a dynamic Bayesian game. Then for every player i and every type
ti the following three hold:

1. WT
i (ti) = WT ∗

i (ϕT
i (ti)).
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2. ST
i (ti) = ST ∗

i (ϕT
i (ti)).

3. BT
i (ti) = BT ∗

i (ϕT
i (ti)).

Proof. We will prove that for every player i and every k ≥ 0 the following hold:

1. WT
i,k(ti) = Wi,k(ϕ

T
i (ti)). The claim is trivially true for k = 0, so let us prove that if is true

for some k ≥ 0, then it is also true for k + 1. Fix player i and type ti. For the eastward
inclusion pick conjecture µi ∈ CT

i (ti) that displays initial belief in WT
−i,k (where, according

to the induction hypothesis, every WT
j,k is type-space invariant) and si ∈ ri(µi). Then, we

know from Lemma 4 that there exists some µ∗
i ∈ CT ∗

i (ϕT
i (ti)) that initially believes in W−i,k

and such that ri(µ∗
i ) = ri(µi). For the westward inclusion pick conjecture µi ∈ CT ∗

i (ϕT
i (ti))

that displays initial belief in W−i,k and si ∈ ri(µi). Then, we know from Lemma 5 that there
exists some µ′

i ∈ CT
i ((ti)) that displays initial believes in WT

−i,k and such that ri(µ′
i) = ri(µi).

Hence, WT
i,k+1(ti) = Wi,k+1(ϕ

T
i (ti)).

2. ST
i (ti) = Si(ϕ

T
i (ti)). Simply proceed as in the previous case, but substitute W for S, and

“initial belief” for “strong belief.”

3. BT
i (ti) = Bi(ϕ

T
i (ti)). Simply proceed as in the previous case, but substitute S for B, and

“initial belief” for “future belief.”

The claims of the proposition follow directly. ■

B Proof of Theorem 1

Throughout the following proof, for every player i, strategy si and history h ∈ H we denote by [si]h

the set of strategies of player i that are equivalent to si for every history h′ of player i’s weakly
following h. That is:

[si]h :=
{
s′i ∈ Si

∣∣s′i(h′) = si(h
′) for every h′ ∈ Hi ∪ {h0} s.t. Si(h

′) ⊆ Si(h)
}
,

and for any s−i ∈ S−i we denote:
[s−i]h :=

∏
j ̸=i

[sj ]h.

Then, the proof of Theorem 1 is simple:

Theorem 1. Let (E ,T ∗) be a dynamic Bayesian game. Then, for any player i the following two
hold:

1. Wi : T
∗
i ⇒ Si is upper-hemicontinuous.

2. Bi : T
∗
i ⇒ Si is upper-hemicontinuous.

Proof. We will prove the two slightly more general claims that, for every playaer i and every k ≥ 0,
both Wi,k and Bi,k are upper-hemicontinuous. We proceed by induction on k. The initial case
(k = 0) is trivially true, so we can focus on the proof of the inductive step. To this end, fix k ≥ 0 for
which the claims hold, and let us verify that then, they also hold for k + 1. Fix player i, sequence
of types (tni )n∈N with limit ti, and:

• Strategy si ∈
⋂

n∈N Wi,k+1(t
n
i ) and sequence of conjectures (µn

i )n∈N where, for each n ∈ N,
µn
i justifies the inclusion of si in Wi,k+1(t

n
i ). Then, notice first that Graph(W−i,k) is equal

to the following set:{
(s−i, t−i) ∈ S−i(h

0)× T ∗
−i |[s−i]h0 ∩W−i,k(t−i) 6= ∅

}
,
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and that we know from the induction hypothesis and Lemma 6 that the latter is closed. In
consequence, we have that:

∀n ∈ N, µn
i (h

0) [Θ∗ × Graph(W−i,k)] = 1 =⇒ µi(h
0) [Θ∗ × Graph(W−i,k)] = 1

Since, obviously, si is a sequential best-reply to µi, we conclude the latter justifies the inclusion
of si in Wi,k+1(ti).

• Strategy si ∈
⋂

n∈N Bi,k+1(t
n
i ) and sequence of conjectures (µn

i )n∈N where, for each n ∈ N,
µn
i justifies the inclusion of si in Bi,k+1(t

n
i ). Then, we know from the induction hypothesis

and Lemma 6 that the following set is closed for every h ∈ Hi ∪ {h0}

E−i(h) :=
{
(s−i, t−i) ∈ S−i(h)× T ∗

−i |[s−i]h ∩ B−i,k(t−i) 6= ∅
}
,

and hence, we have that:

∀n ∈ N, µn
i (h) [Θ

∗ × E−i(h)] = 1 =⇒ µi(h) [Θ
∗ × E−i(h)] = 1

Since, obviously, si is a sequential best-reply to µi, we conclude the latter justifies the inclusion
of si in Bi,k+1(ti).

It follows from the above that both Wi and Bi,k are upper-hemicontinuous. ■

Lemma 6. Let (E ,T ∗) be a dynamic Bayesian game, let i be a player, and let Ii : T ∗
i ⇒ Si be an

upper-hemicontinuous correspondence. Then, the following set is closed for every h ∈ H:

Ei(h) = {(si, ti) ∈ Si(h)× T ∗
i |[si]h ∩ Ii(ti) 6= ∅} ,

Proof. Fix h ∈ H and pick as convergent sequence (sni , t
n
i )n∈N in E(h) with limit (si, ti). Since Si

is finite, we know that there exists some N ∈ N such that sni = si for every n ≥ N . Now, since
[si]h ∩ Ii(tni ) 6= ∅, we know that for every n ∈ N where exists some s̃ni ∈ [si]h ∩ Ii(tni ), and since Si

is finite, we also know that there exist some Ñ ≥ N and some s̃i ∈ Si such that s̃ni = s̃i for every
n ≥ Ñ . Now, since I is upper-hemicontinuous we conclude s̃i ∈ Ii(ti) too. Thus, we have that
[si]h ∩ Ii(ti) 6= ∅ and hence, that (si, ti) ∈ Ei(h). In consequence, the latter is closed. ■

C Proof of Theorem 2

C.1 Auxiliary notation

Hi,k(∆
∗
i (ti)) :=

{
h ∈ Hi ∪ {h0} |S−i(h)×∆∗

i (ti) ∩ Graph(S−i,k)×Θ∗ 6= ∅
}

Bi(E−i) := {ti ∈ T ∗
i |∆∗

i (ti) ⊆ E−i } .

Lk
i := {ti ∈ T ∗

i |Si,k(ti) = Si(ti)}

C.2 Auxiliary lemmas

Lemma 7. Let (E ,T ∗) be a dynamic Bayesian game. Then, for every player i and every open and
dense set E−i ⊆ T ∗

−i the set Bi(Θ
∗ × E−i) is open and dense in T ∗

i .
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Proof. Fix arbitrary type ti ∈ T ∗
i and open and dense E−i ⊆ T ∗

−i. Since ∆∗
i (ti) is compact we know

that, for every n ∈ N, it contains finitely many elements xn1 , . . . , xnNn
such that:

∆∗
i (ti) ⊆

⋃
xi∈∆∗

i (ti)

B̊1/n(xi) =

Nn⋃
ℓ=1

B̊1/n(x
n,ℓ
i ).

Now, since E−i is open and dense then, for every n ∈ N and every ℓ = 1, . . . , Nn:

En,ℓ
−i := B̊1/n(x

n,ℓ
i ) ∩Θ∗ × E−i

is open and nonempty and thus, we know that there exists some εn ∈ (0, 1) such that, for every
ℓ = 1, . . . , Nn,

Y n,ℓ
i := B−εn/n

(
En,ℓ

−i

)
is nonempty and, of course, contained in Θ∗ × E−i. Now, for each ℓ = 1, . . . , Nn pick arbitrary
yn,ℓi ∈ Y n,ℓ

i and notice that by setting:

τni [y
n,ℓ
i ] := τ∗i (ti)

[
B1/n(x

n,ℓ
i )
]
,

we obtain a well-defined probability measure τni ∈ ∆(Θ∗ × T ∗
−i). Finally, define tni as follows:

tni := h∗i (Y
n
i , τ

n
i ) ,

where Y n
i :=

⋃Nm

ℓ=1 Y
n,ℓ
i . Obviously, for every n ∈ N it holds that ∆∗

i (ti) ⊆ Θ∗ ×E−i, and obviously
too, (tni )n∈N converges to ti. ■

Lemma 8. Let (E ,T ∗) be a dynamic Bayesian game. Then, for every player i the following set is
open and dense in T ∗

i : ⋃
k∈N

L̊k
i .

Proof. For each player i set first:

Y 1
i := {ti ∈ T ∗

i |Si,1(ti) = [si] for some si ∈ Si } ,

and then, define iteratively, for every k ∈ N,

Y k+1
i := Bi

Θ∗ ×
∏
j ̸=i

Y k
j

 .

We claim that, for every k ∈ N, Y k
i is open and included in Y k

i ⊆ L̊k
i . The claim is trivially true

for k = 1 and easily extends to every k by a standard iterative argument. Thus, we have that:

Ui :=
⋃
k∈N

Y k
i ⊆

⋃
k∈N

L̊k
i

is an open set that, furthermore is also dense, as every type ti admits being approximated at
increasingly many lower orders by elements in Ui. Hence,

⋃
k∈N L̊

k
i is dense too. ■
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C.3 Proof of the result

Theorem 2. Let (E ,T ∗) be a dynamic Bayesian game. Then, for any player i the following three
hold:

1. Si : T
∗
i ⇒ Si is generically upper-hemicontinuous.

2. Si|T 0
i
: T 0

i ⇒ Si is upper-hemicontinuous.

Proof. We begin with the first claim. First, for each player i define set X0
i := T ∗

i which is, obviously,
some generic set in which Si,0 is upper-hemicontinuous everywhere. Next, pick k ≥ 0 such that,
for each player j 6= i there exists some generic set Xk

j ⊆ T ∗
j in which Sj,ℓ is upper-hemicontinuous

everywhere for every ℓ = 0, 1, . . . , k (we know that for k = 0 these sets exist), and define:

Zk+1
i :=

t′i ∈ T ∗
i

∣∣∣∣∣∣
(1) t′i ∈ Bi

(
Θ∗ ×

∏
j ̸=iX

k
j

)
(2) There exist t′i ∈ Ti and n ∈ N s.t. B1/n(∆

∗
i (t

′
i)) = ∆∗

i (ti)

 .

Pick arbitrary ti ∈ Zk+1
i . Because of (1) above, we know that for every t−i ∈ ProjT∗

j
(∆∗

i (ti)) there
exists some open set U−i(t−i) ⊆ T ∗

−i such that S−i,ℓ(t
′
−i) ⊆ S−i,ℓ(t−i) for every t′−i ∈ U−i(t−i) and

every ℓ = 0, 1, . . . , k. Set then:

U−i(ti) =
⋃{

U−i(t−i)
∣∣∣t−i ∈ ProjT−i

∆∗
i (ti)

}
.

Since U−i(ti) is open and it contains ProjT∗
−i
∆∗

i (ti) then we know that there exists some δ(ti) > 0

such that, for every t′i ∈ B̊δi(ti)(ti), t′i ∈ Bi(Θ
∗ × U−i(ti)) and, consequently:

Hi,ℓ(∆
∗
i (t

′
i)) ⊆ Hi,ℓ(∆

∗
i (ti))

for every ℓ = 0, 1, . . . , k. Now, for each n ∈ N define type:

t̃ni (ti) := h∗i (B1/n(∆
∗
i (ti)), τi(ti)).

Obviously, sequence (t̃ni (ti))n∈N converges to ti and thus, it follows from the above that there exists
some N(ti) such that t̃ni (ti) ∈ B̊δ(ti)(ti) for every n ≥ N(ti). Given this, fix tni (ti) := t̃

N(ti)+n
i (ti) for

every n ∈ N. Then, for every n ∈ N there exists some δn(ti) > 0 such that B̊δn(ti)(t
n
i (ti)) ⊆ B̊δ(ti)(ti)

so that for every two t′i, t′′i ∈ B̊δn(ti)(t
n
i (ti)) we have that:

Hi,ℓ(∆
∗
i (t

′
i)) = Hi,ℓ(∆

∗
i (t

′′
i )))

for every ℓ = 0, 1, . . . , k. We can then define:

Xk+1
i :=

⋃{⋃{
B̊δn(ti)(t

n
i (ti))

∣∣∣n ∈ N
}∣∣∣ ti ∈ Zk+1

i

}
,

which is clearly open. In addition, we have that:

• Xk+1
i is dense. To prove this, let us prove first that Zk+1

i is dense. Since Θ∗ ×
∏

j ̸=iX
k
j is

dense, we know by Lemma 7 that the following set is dense too:

Z̃k+1
i := Bi

Θ∗ ×
∏
j ̸=i

Xk
j

 .

Now, notice that Zk+1
i is dense in Z̃k+1

i (and hence in T ∗
i ): it is a subset of the latter, and we
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can approximate every ti ∈ Z̃k+1
i \Zk+1

i using sequence of types (h∗i (B1/n(∆
∗
i (ti)), τ

∗
i (ti)))n∈N

whose tail is contained in Zk+1
i . Now, obviously, for every ti ∈ Zk+1

i it is the case that sequence
(tni (ti))n∈N converges to ti. Since the tail of this sequence is contained in Xk+1

i , we conclude
that this set is dense in T ∗

i .

• Si,k+1 is upper-hemicontinuous everywhere in Xk+1
i . To see this, fix ti ∈ Xk+1

i and notice
first that there exists some open Ui ⊆ T ∗

i such that Hi,k(∆
∗
i (ti)) = Hi,k(∆

∗
i (t

′
i)) for every

t′i ∈ Ui. Then, pick sequence (tni )n∈N converging to ti, strategy si ∈
⋂

n∈N Si,k+1(t
n
i ), and,

for each n ∈ N, conjecture µi that justifies the inclusion of si in Si,k+1(t
n
i ). Pick some µi in

the set of cluster points of the previous sequence of conjectures. Obviously, µi is consistent
with ti and si is a best-reply to it. Now, fix N ∈ N such that tni ∈ Ui for every n ≥ N . Then,
we have that, for every ℓ = 0, 1, . . . , k,

∀n ≥ N, ∀h ∈ Hi,ℓ(∆
∗
i (t

n
i )), µ

n
i (h) [Θ

∗ × Graph(S−i,k)] = 1

=⇒ ∀n ≥ N, ∀h ∈ Hi,ℓ(∆
∗
i (ti)), µ

n
i (h)

Θ∗ × Graph(S−i,ℓ) ∩ S−i(h)×
⋃

m≥n

∆∗
i (t

m
i )

 = 1

=⇒ ∀n ≥ N, ∀h ∈ Hi,ℓ(∆
∗
i (ti)), µi(h)

Θ∗ × Graph(S−i,ℓ) ∩ S−i(h)×
⋃

m≥n

∆∗
i (t

m
i )

 = 1

=⇒ ∀h ∈ Hi,ℓ(∆
∗
i (ti)), µi(h)

Θ∗ × Graph(S−i,ℓ) ∩ S−i(h)×
⋂

n≥N

⋃
m≥n

∆∗
i (t

m
i )

 = 1

=⇒ ∀h ∈ Hi,ℓ(∆
∗
i (ti)), µi(h) [Θ

∗ × Graph(S−i,ℓ) ∩ S−i(h)×∆∗
i (ti)] = 1,

where: (a) the second implication is a consequence of S−i,ℓ being upper-hemicontinuous
everywhere in U−i(ti) and, as a result, everywhere in the projection of T ∗

−i of the closure
of
⋂

m≥n ∆
∗
i (t

m
i ) (remember that T ∗

i is metrizable)—this implies that the graph of S−i,ℓ

is closed when restricted to those types, and (b) the third implication is a consequence of
(tni )n∈N and ∆∗

i being continuous. Thus, we conclude that µi strongly believes in S−i,ℓ for
every ℓ = 0, 1 . . . , k and hence, that it justifies the inclusion of si in Si,k+1.

We have thus concluded that, for every k ∈ N there exists some generic set Xk
i ⊆ T ∗

i in which Si,k

is upper-hemicontinuous everywhere. Finally, for each player i and each k ∈ N define:

Gi :=
⋃
k∈N

Xk
i ∩ L̊k

i

Obviously, Gi is open and satisfies that Si is upper-hemicontinuous everywhere on it.40 To see that
it is also dense, notice that we have:

⋃
k∈N

Xk
i ∩ L̊k

i ⊆ Gi =
⋃
k∈N

Xk
i ∩ L̊k

i =⇒
⋃
k∈N

Xk
i ∩ L̊k

i ⊆ Gi

=⇒
⋃
k∈N

L̊k
i ⊆ Gi

40Simply notice that if ti ∈ Xk
i then there exist some open set Ui such that Si,k(t

′
i) ⊆ Si,k(ti) for every

t′i ∈ Ui and if ti ∈ Lk
i we also have that Si,k(ti) = Si(t

′
i). Obviously, it follows that Si(t

′
i) ⊆ Si(ti) for every

t′i ∈ Ui.
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=⇒
⋃
k∈N

L̊k
i ⊆ Gi =⇒ Gi = T ∗

i

where the first inclusion and the first and third implication follow from elementary properties of
topological closures, the second implication follows from the fact that each Xk

i is dense and each L̊k
i

is open, and the last implication follows from Lemma 8.
We proceed now to the proof of the second claim. Fix a sequence of consistent profiles of types

(tn)n∈N converging to another consistent profile of information-based types t and pick arbitrary
s ∈ S(tn). Then, we can denote:

z(s|h0) = (h0, a1, . . . , aL),

where, for each ℓ = 1, . . . , L, aℓ describes the actions chosen by the players active at history hℓ−1 :=

(h0, a1, . . . , aℓ−1), denoted by I(hℓ−1). Then, we will prove the following claim: for every ℓ =

0, 1, . . . , L− 1 and every i ∈ I(hℓ) the following two hold:

(1) hℓ ∈
⋂

k≥0 Hi,k(∆
∗
i (ti))

(2) There exists some s̄i ∈ Si(h
ℓ) ∩ Si(ti) such that s̄i(hℓ) = aℓ+1

i .

We proceed by induction on ℓ. The claim holds trivially at the initial case (ℓ = 0), so we can focus
on the proof of the inductive step. Suppose that ℓ is such that the claim holds; let us verify then that
the claims also hold for ℓ+ 1. Fix i ∈ I(hℓ+1). That (1) is satisfied is an immediate consequence of
part (2) of the inductive hypothesis and the fact that t is consistent (and hence t−i ∈ ProjT∗

−i
∆∗

i (ti)).
To see (2), first, for each n ∈ N pick a conjecture µn

i that justifies the inclusion of si in Si(t
n
i ),41

and pick µi to be a cluster-point of sequence (µn
i )n∈N. Obviously, µi is consistent with ti. Now,

pick arbitrary conjecture µ′
i that is consistent with ti and strongly believes in S−i,k for every k ≥ 0,

and define conjecture µ̄i by setting, for each h ∈ Hi ∪ {h0},

µ̄i(h) :=


µi(h) if margS−i

µi(h
′)[S−i(h)] > 0

for some h′ ∈ Hi ∪ {h0} s.t. S−i(h
′) ⊆ S−i(h) ∩ S−i(h

ℓ+1),

µ′
i(h) otherwise,

and, pick arbitrary s′i ∈ ri(µ̄i) and define strategy s̄i by setting, for each h ∈ Hi,

s̄i(h) :=


si(h) if margS−i

µi(h
′)[S−i(h)] > 0

for some h′ ∈ Hi ∪ {h0} s.t. S−i(h
′) ⊆ S−i(h) ∩ S−i(h

ℓ+1),

s′i(h) otherwise.

Then, we have that:

• µ̄i is a well-defined conjecture that is consistent with ti. This is immediate.

• s̄i ∈ ri(µ̄i). This follows from the choice of s′i and the fact that, for every history h ∈ Hi∪{h0}
that obtains positive probability under some other history h′ ∈ Hi ∪ {h0} weakly preceding
hℓ+1, we have that, for every s′′i ∈ Si,∫

S−i×Θ∗
θi(z(s−i, s

′′
i |h))d(margS−i×Θ∗ µ̄i(h)) =

∫
S−i×Θ∗

θi(z(s−i, s
′′
i |h))d(margS−i×Θ∗µi(h)).

41Just notice the there is some k such that Si(t
n
i ) = Si,k(t

n
i ); then, pick a conjecture µn

i that justifies the
inclusion of si in Si,k(t

n
i .)
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• µ̄i strongly believes in S−i,k for every k ≥ 0. Clearly, it suffices with checking that, for
every k ≥ 0 and every history h that weakly precedes h, µi(h) puts probability 1 on Θ∗ ×
Graph(S−i,k).

Thus, we conclude that s̄i ∈ Si(ti). Now, it is clear by construction of s̄i that s̄i ∈ Si(h
ℓ+1) and

s̄i(h
ℓ+1) = si(h

ℓ+1); hence, the proof is complete. ■

D Proof of Proposition 2

Proposition 2. Let (E ,T ) be a dynamic Bayesian game where every type ti of every player i

basic. Then, for every player i the correspondence ST
i : Ti ⇒ Si is upper-hemicontinuous.

Proof. We will prove that, for every player i and every k ≥ 0, ST
i,k : Ti ⇒ Si is upper-hemicontinuous.

We proceed by induction on k. The claim is trivially true for the initial case (k = 0), so we can
focus in the proof of the inductive step: suppose that the claim holds for k ≥ 0, and let us verify
that it also does then for k + 1. To this end, fix player i, convergent sequence of types (tni )n∈N

with limit ti, strategy si ∈ ∩n∈NST
i,k+1(t

n
i ) and sequence of conjecture (µn

i )n∈N where, for each
n ∈ N, µn

i justifies that si ∈ ST
i,k+1(t

n
i ). Let µi be a cluster-point off this last sequence. Clearly,

si is a sequential best-reply to µi and µi is consistent with ti. Now, fix ℓ = 0, 1, . . . , k and to see
that µi strongly believes in S−i,ℓ, notice first that, as T only consists of basic types, we have that
ProjT∗

j
(tj) = ProjT∗

j
(t′j) for very player j ∈ I and every pair of players tj , t′j ∈ Tj . Thus, it clearly

follows that:
Hi,ℓ(∆i(t

n
i )) = Hi,ℓ(∆i(ti))

Furthermore, notice that we know from the induction hypothesis that Graph(ST
−i,ℓ) is closed for

every. Then for each h ∈ Hi,k(∆i(ti)) we have that:

µn
i (h)

[
Θ× Graph(ST

−i,ℓ)
]
= 1

what implies that:

µn
i (h)

[
Θ× Graph(ST

−i,ℓ)
]
≥ limsup

n→∞
µn
i (h)

[
Θ× Graph(ST

−i,ℓ)
]
= 1.

Hence, we conclude that µi strongly believes in ST
−i,ℓ and from here, together with the above, that

is justifies the inclusion of si ∈ ST
i,k+1(ti). It follows then that ST

i is upper-hemicontinuous. ■

E Proof of Theorem 3

E.1 Auxiliary notation

E.1.1 For strict rationalizability

Let (E ,T ∗) be dynamic Bayesian game. Then, for each player i and strategy si, we define the set
of strategies that are behaviorally equivalent to si as:

[si] := {s′i ∈ Si |s′i(h) = si(h) for every h ∈ Hi(si)}
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Given this, the strictly rationalizable strategies of player i are given by S0
i : T ∗

i ⇒ Si where, for each
type ti we have S0

i (ti) :=
⋂

k≥0 S0
i,k(ti) with S0

i,0(ti) := Si, and, for every k ≥ 0,

S0
i,k+1(ti) :=

si ∈ Si

∣∣∣∣∣∣∣∣
There exists some µi ∈ CT ∗

i (ti) such that:

(1) ri(µi) = [si],

(2) µi displays strong belief in S0
−i,ℓ for every ℓ = 0, 1, . . . , k

 .

For each the set of histories of player i in which type ti can interpret others to play according to
kth-order strictly rationalizable strategies is:

H0
i,k(∆

∗
i (ti)) :=

{
h ∈ Hi ∪ {h0}

∣∣S−i(h)×∆∗
i (ti) ∩ Graph(S0

−i,k)×Θ∗ 6= ∅.
}
.

E.1.2 For the first perturbation

For n ∈ N, each payoff-state θ ∈ Θ∗, each player i and each strategy si let payoff-state θn[θ, si] ∈ Θ∗

be defined by setting, for each player j,

(θn[θ, si])j(z) :=

{
θi(z) +

1
n if j = 1 and z = z((s−i, si)|h0) for some s−i ∈ S−i,

θj(z) otherwise.

E.1.3 For the second perturbation

Ti,k(si) :=


ti ∈ T ∗

i

∣∣∣∣∣∣∣∣∣∣∣

There exists some µi ∈ CT ∗

i (ti) such that:

(1) ri(µi) = [si]

(2) µi displays strong belief in S0
−i,ℓ for every ℓ = 0, 1, . . . , k

(3) µi(h
0)[S−i(h)×Θ∗ × T ∗

−i] > 0 for every h ∈ Hi,k(∆
∗
i (ti))


E.1.4 For the third perturbation

Based on the above, for each the set of histories of player i in which type ti can interpret others to
play according to kth-order weakly rationalizable strategies, is:

HW
i,k(∆

∗
i (ti)) :=

{
h ∈ Hi ∪ {h0} |S−i(h)×∆∗

i (ti) ∩ Graph(W−i,k)×Θ∗× 6= ∅.
}
.

Based on this, we consider the set of strategies that are behaviorally equivalent to some strategy si
only at those histories that a type ti considers reachable by (k − 1)th-order weakly rationalizable
strategies of others:

[si|ti]k :=
{
s′i ∈ Si

∣∣s′i(h) = si(h) for every h ∈ HW
i,k(∆

∗
i (ti)) ∩Hi(si)

}
.

E.2 Auxiliary lemmas

E.2.1 Availability of finite conjectures

Lemma 9. Let (E ,T ∗) be a dynamic Bayesian game. Then for any k ≥ 0, any player i, any finite
type ti ∈ Xk

i and every strategy si ∈ Si,k(ti) there exists a finite conjecture µi that justifies the
inclusion of si in Si,k(ti).

Proof. Fix k ≥ 0, player i, finite type Xk+1
i and strategy si ∈ Si,k+1(ti) and pick conjecture µi

that justifies the inclusion of si in Si,k+1(ti). For convenience, let us denote Zi := Θ0 × T ∗
−i. Since
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Zi is separable, we can pick countable (xmi )m∈N where {xmi }m∈N is dense in Zi. Now, for each
m,n ∈ N let B1/n(x

m
i ) denote the ball of radius 1/n around xmi . We know because of the upper

hemicontinuity of S−i,ℓ in Xk
−i for each ℓ = 0, 1, . . . , k that for each n,m ∈ N there exists some open

set W ℓ,n,m
i ⊆ B1/n(x

m
i ) such that S−i,ℓ(t−i) ⊆ S−i,ℓ(t

m
−i) for every t−i is in the projection of W ℓ,n,m

i

on T ∗
−i, tm−i being the projection on T ∗

−i of xmi . Furthermore, for each ℓ = 0, 1, . . . , k and n ∈ N,
the family {W ℓ,n,m

i }m∈N is an open cover of Zi, which, due to Zi being compact, we can assume as
finite: {W ℓ,n,m

i }Mℓ,n

m=1 . Now, for each ℓ = 0, 1, . . . , k and n ∈ N set:

V ℓ,n,m
i :=W ℓ,n,m

i \
m−1⋃
r=1

W ℓ,n,r
i .

Notice that for each ℓ = 0, 1, . . . , k and n ∈ N family {V ℓ,n,m
i }Mℓ,n

m=1 is a partition of Zi consisting of
measurable sets, contained in a ball of radius 1/n. Since the set of finite types is dense in Zi for each
ℓ = 0, 1, . . . , k and n ∈ N, there exists some list (yℓ,n,mi )

Mℓ,n

m=1 such that, for each m = 1, . . . ,Mℓ,n,
the projection on T ∗

−i of yℓ,n,mi is finite and yℓ,n,mi ∈ V ℓ,n,m
i .

We turn now back to µi. For every ℓ = 0, 1, . . . , k set Hi,ℓ(ti, µi) := Hi(µi) ∩ Hi,ℓ(∆
∗
i (ti)) and,

for notational convenience, set Hi,k+1(ti, µi) = ∅. Next, we will construct a conditional probability
system µn

i for each n ∈ N. First, for each each ℓ = 0, 1, . . . , k and each h ∈ Hi,ℓ(ti, µi)\Hi,ℓ+1(ti, µi)

define:
µn
i (h)[(s−i, y

ℓ,m
i )] := µi(h)[{s−i} × V ℓ,n,m

i ],

for every s−i ∈ S−i and every m = 1, . . . ,Mℓ,n. Second, set µn
i (h

0) := µi(h
0). Finally, for each

h /∈ Hi(µi) define µn
i (h) via conditional probability. Notice that the marginals on S−i of µi(h) and

each µn
i (h) coincide for every history h, and this guarantees that µn

i is (or, has been) well-defined.
Now, notice also that, for each ℓ = 0, 1, . . . , k, µn

i (h) assigns probability one to the graph of S−i,ℓ.
Obviously, every µm

i is consistent with type ti, and sequence (µn
i )n∈N converges to µi. Thus, the

upper hemicontinuity of ri ensures the existence of some N ∈ N such that si ∈ ri(µ
n
i ) for every

n ≥ N . Hence, every µn
i where n ≥ N is a finite conjecture that justifies the inclusion of si in

Si,k+1(ti). ■

E.2.2 First perturbation

Lemma 10. Let (E ,T ∗) be a dynamic Bayesian game. Then, for any player i, any finite type ti,
any k ∈ N and any si ∈ Si,k(ti) there exists a sequence of finite types (tni )n∈N converging to ti such
that, for every n ∈ N, the following hold:

(1) H0
i,k−1(∆

∗
i (t

n
i )) = Hi,k−1(∆

∗
i (t

n
i )) = Hi,k−1(∆

∗
i (ti))

(2) si ∈ S0
i,k(t

n
i ).

Proof. Let us begin proving the following claim: for any k ∈ N and any finite ti ∈ Xk
i (as defined

in the proof of part 1 of Theorem 2) and any s ∈ Si,k(ti) there exists a sequence of finite types
(tni (ti, k, si))n∈N converging to ti such that the following hold:

(1) H0
i,k−1(∆

∗
i (t

n
i (ti, k, si))) = Hi,k−1(∆

∗
i (t

n
i (ti, k, si))) = Hi,k−1(∆

∗
i (ti))

(2) si ∈ S0
i,k(t

n
i (ti, k, si)).

(3) Si,k(t
n
i (ti, k, si)) ⊆ Si,k(ti).

(4) S0
i,k(t

n
i (ti, k, si)) ⊆ Si,k+1(t

n
i (ti, k, si)).

We proceed by induction on k. To verify the claim for the initial case (k = 1), fix player i and
finite type ti ∈ X1

i , and pick strategy si ∈ Si,1(ti) and finite conjecture µi that justifies this
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inclusion.42 Notice that, as ti ∈ X1
i there exists some open set Ui(ti) ⊆ X1

i such that ∆∗
i (t

′
i) ⊆ X0

−i,
Hi,0(∆

∗
i (t

′
i)) = Hi,0(∆

∗
i (ti)) and Si,1(t

′
i) ⊆ Si,1(ti) for every t′i ∈ Ui(ti). Then, for every n ∈ N

define:

• ∆n(ti, 1) :=
⋃
{B1/n(θ)× {t−i}|(θ, t−i) ∈ ∆∗

i (ti)}.

• For every h ∈ Hi(µi) and every (s−i, θ, t−i) in the support of µi(h) set:

µ̂n
i (h)[(s−i, θ

n[θ, s−i], t−i)] := µi(h)[(s−i, θ, t−i)],

The finiteness of µ̂n
i guarantees that the above induces a well-defined measure µ̂n

i (h) ∈ ∆(S−i×
Θ∗×T ∗

−i). For every h /∈ Hi,k(µi) define µ̂n
i (h) via conditional probability. Obviously, it holds

that ri(µ̂n
i ) = [si] for every n ∈ N.

• t̂ni (ti, 1, si) := h∗i (∆
n(ti, 1),margΘ∗×T∗

−i
µ̂n
i (h

0)) which is, clearly, finite.

It is immediate that (t̂ni (ti, 1, si))n∈N converges to ti and thus, that there exists some N ∈ N such
that t̂n(ti, 1, si) ∈ Ui(ti) for every n ≥ N . Redefine then by setting: tn(ti, 1, si) := t̂n+N (ti, 1, si)

and µn
i := µ̂n+N

i for every n ∈ N. We know verify that (1), (2), (3), and (4) are satisfied for every
n ∈ N:

(1) Since S0
j,0(tj) = Sj,0(tj) = Sj for every j 6= i and every tj ∈ T ∗

j ,

H0
i,0(∆

∗
i (t

n
i (ti, 1, si))) = Hi,0(∆

∗
i (t

n
i (ti, 1, si))) = Hi,0(∆

∗
i (ti)).

(3) µn
i ∈ CT ∗

i (tni (ti, 1, si)) is a conjecture that strongly believes in S0
−i,0. Since ri(µn

i ) = [si], we
conclude that si ∈ S0

i,1(t
n(ti, 1, si)).

(4) Since tni (ti, 1, si) ∈ Ui(ti) we know that Si,1(t
n(ti, 1, si)) ⊆ Si,1(ti).

(5) Pick arbitrary s′i ∈ S0
i,1(t

n
i (ti, 1, si)) and conjecture µ′

i that justifies this inclusion. Obviously,
µ′
i strongly believes in S−i,0 and thus, we conclude that it also justifies the inclusion of s′i in

Si,1(t
n
i (ti, 1, si)). Hence, S0

i,1(t
n
i (ti, 1, si)) ⊆ Si,1(t

n(ti, 1, si)).

We proceed now to the proof of the inductive step. Let k ≥ 1 be such that the claim holds, and
let us verify that, then, it also does for k+1. Fix player i and finite type ti ∈ Xk+1

i , and pick strategy
si ∈ Si,k+1(ti) and finite conjecture µi that justifies this inclusion. Notice that, as ti ∈ Xk+1

i there
exists some open set Ui(ti) ⊆ Xk+1

i such that ∆∗
i (t

′
i) ⊆ Xk

−i, Hi,ℓ(∆
∗
i (t

′
i)) = Hi,ℓ(∆

∗
i (ti)) for every

ℓ = 0, 1, . . . , k, and Si,k+1(t
′
i) ⊆ Si,k+1(ti) for every t′i ∈ Ui(ti). Then, for every n ∈ N define:

• ∆n(ti, k + 1) := {(θ, tn−i(t−i, k, s−i))|(θ, t−i) ∈ ∆∗
i (ti) and s−i ∈ S−i,k(t−i)}.

• For every ℓ = 0, 1, . . . , k set Hℓ
i := Hi,ℓ(∆

∗
i (ti)) ∩ Hi(µi) (and, for convenience, Hk+1

i = ∅)
and, for each h ∈ Hℓ

i \H
ℓ+1
i define:

µ̂n
i (h)[E] := µi(h)


(s−i, θ, t−i) ∈ supp(µi(h))

∣∣∣∣∣∣∣∣
(s−i, θ

′, t′−i) ∈ E for:

(a) θ′ = θn[θ, si],

(b) t′−i = tn−i(s−i, ℓ, t−i)


 ,

for every measurable E ⊆ S−i × Θ∗ × T ∗
−i. The finiteness of µ̂n

i guarantees that the above
induces a well-defined measure µ̂n

i (h) ∈ ∆(S−i × Θ∗ × T ∗
−i). For every h /∈ Hi,k(µi) define

µ̂n
i (h) via conditional probability. Obviously, it holds that ri(µ̂n

i ) = [si] for every n ∈ N.
42The existence of this finite conjecture is ensured by Lemma 9.
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• t̂ni (ti, k + 1, si) := h∗i (∆
n(ti, k + 1),margΘ∗×T∗

−i
µ̂n
i (h

0)), which is, clearly, finite.

It is immediate that (t̂ni (ti, k + 1, si))n∈N converges to ti and thus, that there exists some N ∈ N

such that t̂n(ti, k + 1, si) ∈ Ui(ti) for every n ≥ N . Redefine then by setting: tn(ti, k + 1, si) :=

t̂n+N (ti, k + 1, si) and µn
i := µ̂n+N

i for every n ∈ N. We know verify that (1), (2), (3), and (4) are
satisfied for every n ∈ N:

(1) Notice first that, for every j 6= i, as ProjT∗
j
∆n

i (ti, k + 1) ⊆ Xk
j , we know that Sj,k is upper-

hemicontinuous at every tj ∈ ProjT∗
j
∆n

i (ti, k + 1), and thus, we have that:

⋃{
Sj,k(tj)

∣∣∣tj ∈ ProjT∗
j
∆n

i (ti, k + 1)
}
=
⋃Sj,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆n

i (ti, k + 1)

 ,

and part (4) of the induction hypothesis implies that:

⋃Sj,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆n

i (ti, k + 1)

 ⊆
⋃Sj,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆∗

i (ti)

 .

In addition, it follows from part (3) of the induction hypothesis that:

⋃Sj,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆∗

i (ti)

 ⊆
⋃S0

j,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆n

i (ti, k + 1)

 ,

and finally, it is a trivial truth that:

⋃S0
j,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆n

i (ti, k + 1)

 ⊆
⋃{

S0
j,k(tj)

∣∣∣tj ∈ ProjT∗
j
∆n

i (ti, k + 1)
}
.

Obviously, it follows that:

Hi,k(∆
∗
i (t

n
i (ti, k + 1, si)) ⊆ H0

i,k(∆
∗
i (t

n
i (ti, k + 1, si)),

and since tni (ti, k + 1, si) ∈ Ui(ti), we know that:

Hi,k(∆
∗
i (ti)) = Hi,k(∆

∗
i (t

n
i (ti, k + 1, si))).

Now, before continuing with the argument, we need to make first a technical observation:
for any sequence of types (tmj )m∈N that are consistent with ∆∗

i (ti) and converge to some tj
we have that (tnj (t

m
j , k, sj))m∈N, where sj ∈

⋂
m∈N Sj,k(t

m
j ), converges to tnj (tj , k, sj)—this

is an artifact of tj being consistent with ∆∗
i (ti) (as the latter is closed) of Sj,k being upper-

hemicontinuous at every tj (as ProjT∗
j
∆∗

j (tj) is contained in Xk
j ), and the construction of

each tn( · , k, sj). In turn, this technical feature, together with the compactness of ∆∗
i (ti)

implies that, if (tnj (tmj , k, smj ))m∈N is a sequence where every tmj is consistent with ∆∗
i (ti) and

smj ∈ Sj,k(t
m
j ), that converges to some type type tj , when there exists some t′j consistent with

∆∗
i (ti) and some sj ∈ Sj,k(t

′
j) such that tj = tnj (t

′
j , k, sj).

It turns out that this last observation implies that:

⋃{
S0
j,k(tj)

∣∣∣tj ∈ ProjT∗
j
∆n

i (ti, k + 1)
}
=
⋃S0

j,k(tj)

∣∣∣∣∣∣tj ∈ ProjT∗
j

◦︷ ︸︸ ︷
∆n

i (ti, k + 1)

 ,
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and thus, it follows from part (5) of the induction hypothesis and the upper-hemicontinuity
on Xk

−i of S−i,k that:⋃{
S0
j,k(tj)

∣∣∣tj ∈ ProjT∗
j
∆n

i (ti, k + 1)
}
⊆
⋃{

Sj,k(tj)
∣∣∣tj ∈ ProjT∗

j
∆n

i (ti, k + 1)
}
.

Together with the above, the latter clearly implies that:

H0
i,k(∆

∗
i (t

n
i (ti, k + 1, si)) = Hi,k(∆

∗
i (t

n
i (ti, k + 1, si))) = Hi,k(∆

∗
i (ti)).

(2) It follows from (1) that µn
i strongly believes in S0

−i,ℓ for every ℓ = 0, 1, . . . , k. Since µn
i ∈

CT ∗

i (tni (ti, k + 1, si)) and ri(µ
n
i ) = [si], we conclude that si ∈ S0

i,k+1(t
n(ti, k + 1, si)).

(3) Since tni (ti, k + 1, si) ∈ Ui(ti) we know that Si,k+1(t
n(ti, k + 1, si)) ⊆ Si,k+1(ti).

(4) Pick arbitrary s′i ∈ S0
i,k+1(t

n
i (ti, k + 1, si)) and conjecture µ′

i that justifies this inclusion.
Notice that the technical observation of the previous step implies that µ′

i only assigns positive
probability to types tnj (tj , ℓ, sj) where tj is in Xℓ

j and sj is in Sj,k(tj) and thus, it follows
form part (1) above and part (4) of the induction hypothesis that µ′

i strongly believes in
S−i,ℓ for every ℓ = 0, 1, . . . , k. Thus, we conclude that s′i ∈ Si,k(t

n
i (ti, k + 1), si). Hence,

S0
i,k(t

n
i (ti, k + 1), si) ⊆ Si,k(t

n
i (ti, k + 1), si).

Now, to prove the claim of the lemma notice first that we know from the proof of part 1 of Theorem
2 that Xk

i is dense for every k ≥ 0. Then, for any finite ti ∈ T ∗
i and any k ≥ 0 there exists some

sequence of finite types (tk,ni )n∈N converging to ti such that tk,ni ∈ Xk
i for every n ∈ N.43 Now,

as seen above, we know that for every n ∈ N there exists a sequence of finite types (tn,mi )m∈N

converging to tk,ni and such that the following hold:

(1) H0
i,k−1(∆

∗
i (t

n,m
i )) = Hi,k−1(∆

∗
i (t

n,m
i )) = Hi,k−1(∆

∗
i (ti))

(2) si ∈ S0
i,k(t

n,m
i )

for every m ∈ N. Thus, if for every m ∈ N we set tni := tn,ni then we have that (tni )n∈N is a sequence
of finite types converging to ti and such that the following hold:

(1) H0
i,k−1(∆

∗
i (t

n
i )) = Hi,k−1(∆

∗
i (t

n
i )) = Hi,k−1(∆

∗
i (ti))

(2) si ∈ S0
i,k(t

n
i )

for every n ∈ N. ■

E.2.3 Second perturbation

Lemma 11. Let (E ,T ∗) be a dynamic Bayesian game. Then, for any k ∈ N, any player i, any finite
type ti ∈ T ∗

i and any strategy si ∈ S0
i,k(ti) there exists a sequence of finite types (tni )n∈N converging

to ti such that ∆∗
i (t

n
i ) = ∆∗

i (ti) and tni ∈ Ti,k(si) for every n ∈ N.

Proof. Fix k ∈ N, player i, finite type ti ∈ T ∗
i and strategy si ∈ S0

i,k(ti), and pick conjecture µi

that justifies the inclusion of si in S0
i,k(ti). Then, for each m ∈ N set:44

µm
i (h0) =

(
1− 1

m

)
µi(h

0) +

(
1

m

) ∑
h∈H0

i,k−1(ti,µi)

(
1

|H0
i,k−1(ti, µi)|

)
µi(h).

43That the components of the sequence can be assumed to be finite is a consequence of the set of finite
types being dense in Xk

i
44Remember that H0

i,k−1(ti, µi) = H0
i,k−1(∆i(t

∗
i )) ∩ Hi(µi).
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Clearly, µm
i (h0) is well-defined element of ∆(S−i × Θ∗ × T ∗

−i) with finite support. Now, for each
m ∈ N denote:

Hm
i =

{
h ∈ Hi ∪ {h0}

∣∣∣(margS−i
µm
i (h0)

)
[S−i(h)] > 0

}
,

and, for any h ∈ Hm
i define µm

i (h) ∈ ∆(S−i × Θ∗ × T ∗
−i) by extending µm

i (h0) via conditional
probability. Finally, let conjecture µm

i and type t̂mi be respectively defined as follows:

µm
i (h) :=

{
µm
i (h) for every h ∈ Hm

i ,
µi(h) otherwise,

and t̂mi := h∗i

(
∆∗

i (ti),margΘ∗×T∗
−i
µm
i (h0)

)
.

Obviously, (t̂mi )m∈N is a sequence of finite types converging to ti. We claim that the following four
properties are satisfied:

(a) For any m ∈ N the marginal on S−i of µm
i (h0) assigns positive probability to S−i(h) for

every history h ∈ H0
i,k−1(∆

∗
i (ti)). To see it, fix such h and distinguish two cases. First, if

h ∈ H0
i,k−1(ti, µi), then:

(margS−i
µm
i (h0)) [S−i(h)] ≥

(
1

m

)
·

(
1

|H0
i,k−1(ti, µi)|

)
· (margS−i

µi(h)) [S−i(h)]

=

(
1

m

)
·

(
1

|H0
i,k−1(ti, µi)|

)
> 0.

Second, if h /∈ H0
i,k−1(ti, µi), then there must exist some history h′ ∈ H0

i,k−1(ti, µi) that
precedes h and such that (margS−i

µm
i (h′)) [S−i(h)] > 0, and thus:

(margS−i
µm
i (h0)) [S−i(h)] ≥

(
1

m

)
·

(
1

|H0
i,k−1(ti, µi)|

)
· (margS−i

µi(h
′)) [S−i(h)] > 0.

(b) For any m ∈ N, µm
i is a well-defined conjecture consistent with t̂mi . Consistency with tmi

holds by construction (or the mere fact that ti and t̂mi have the same information); thus, all
we need to check is that µm

i does not violate conditional update. This is easy to see by simply
noticing that for any pair of different histories h, h′ ∈ H0

i,k−1(ti, µi) the marginal on S−i of
µi(h) puts zero probability on S−i(h

′). This implies that for any h, h′ ∈ Hm
i there are no

inconsistency issues arising from belief update.45 Clearly, there are no problems either for any
pair h, h′ /∈ Hm

i (due to µi being a conditional probability system). Since for any h ∈ Hm
i the

marginal on S−i of µi(h) puts zero probability on S−i(h
′) for any h′ /∈ Hm

i , it follows that
pairs h ∈ Hm

i and h′ /∈ Hm
i are not problematic either.

(c) µi strongly believes in S0
−i,ℓ, for every ℓ = 0, . . . , k − 1. For ℓ = k − 1, notice that it holds by

construction that:
supp µm

i (h0) ⊆ Graph
(
S0
−i,ℓ

)
,

and thus we have that, for every h ∈ H0
i,ℓ(ti, µi),

supp µm
i (h) ⊆ supp µm

i (h0) ⊆ Graph
(
S0
−i,ℓ

)
.

45Because if h, h′ ∈ Hm
i then there exist h̄, h̄′ ∈ H0

i,k−1(ti, µi) such that µi(h̄) induces µm
i (h) and µi(h̄

′)
induces µm

i (h′). Since the marginal on S−i of µi(h̄) (resp. µi(h̄
′)) puts zero probability on S−i(h̄′) (resp.

S−i(h̄)), it follows that the marginal on S−i of µm
i (h) (resp. µm

i (h′)) puts zero probability on S−i(h
′) (resp.

S−i(h)).
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Now, for every ℓ < k − 1 we have that, if h ∈ H0
i,ℓ(ti, µi) \ H0

i,k−1(ti, µi) that:

supp µm
i (h) = supp µi(h) ⊆ Graph

(
S0
−i,ℓ

)
.

(d) There exists some m0 ∈ N such that ri(µm
i ) = [si] for every m ≥ m0. This follows trivially

from the finiteness of Si, the continuity of the conditional expected utilities and the fact that
(µm

i )m∈N converges to µi.

This way, we conclude that si ∈ S0
i,k(t̂

m
i ) for every m ≥ m0. Hence, if for each n ∈ N we relabel as

tni := t̂n+m0
i , (tni )n∈N is the sequence we are looking for. ■

E.2.4 Third perturbation

Lemma 12. Let (E ,T ∗) be a dynamic Bayesian game. Then for any k ≥ 2, any player i, any
mildly consistent, finite type ti, and any strategy si ∈ S0

i,k(ti) such that ti ∈ T 0
i,k(si) there exists a

finite type tki such that:

(i) µk
i (t

k
i ) = µk

i (ti).

(ii) Wi,k+1(t
k
i ) ⊆ [si|ti]k−1.

Proof. We proceed by induction on k. To verify that the claims hold for the initial case (k = 1) fix
player i, mildly consistent, finite type t̄i, strategy s̄i ∈ S0

i,1(t̄i) such that t̄i ∈ Ti,1(s̄i), and conjecture
µ̄i that justifies the inclusion of t̄i in Ti,1(s̄i) (and thus the inclusion of s̄i in S0

i,1(t̄i)).
Now, for each j 6= i and each sj ∈ Sj consider state θsj ∈ Θ∗ in which sj is conditionally

dominant for player j, and type tsjj that persistently (and thus also initially) believes in θsj—i.e.,
such that ∆1

j (t
sj
j ) = {θsj}. Obviously, it holds that Sj,1(t

sj
j ) = [sj ]. Define then conjecture µ1

i by
setting:

µ̄1
i (h

0)[(s−i, θ, t
s−i

−i )] := µ̄i(h
0)[{(s−i, θ)} × T ∗

−i]

for every (s−i, θ) ∈ S−i × Θ∗ (the finiteness of t̄i guarantees that µ̄k+1
i is well-defined). For every

h ∈ H0
i,0(∆i(t̄i)) \ {h0} define µ̄1

i (h) ∈ ∆(S−i × Θ∗ × T ∗
−i) via conditional probability; notice then

that, for every h ∈ H0
i,0(∆i(t̄i)) and every measurable E ⊆ S−i×Θ∗, we have that µ̄1

i (h)[E×T ∗
−i] =

µ̄i(h)[E × T ∗
−i], and thus, for every h ∈ H0

i,0(∆i(t̄i)) and any every si it holds that:∫
S−i×Θ∗

θi(z(s−i, si|h))d(margS−i×Θ∗ µ̄1
i (h)) =

∫
S−i×Θ∗

θi(z(s−i, si|h))d(margS−i×Θ∗ µ̄i(h)).

Finally, define compact set:

∆1
i := ∆∗

i (t̄i) ∪
{
(θ, t

s−i

−i )
∣∣∣(θ, s−i) ∈ supp(margS−i×Θ∗ µ̄i(h

0))
}
,

and then, type t1i := h∗i (∆
1
i ,margΘ∗×T∗

−i
µ̄1
i (h

0)). Clearly, t1i is finite, and such that µ1
i (t

1
i ) = µ1

i (t̄i).46

Furthermore, it is immediate that for every µi ∈ CT ∗

i (t1i ) that strongly believes in S−i,1 the marginals
of µi(h) and µ̄1

i (h)—and hence that of µ̄1
i (h) too—coincide for every h ∈ H0

i,0(∆
∗
i (t̄i)) = Hi ∪ {h0},

and hence, that ri(µi) = [s̄i]. Obviously, it follows that Si,2(t
1
i ) = [s̄i].

We continue now with the (arguably more tedious) proof of the inductive step. Suppose that
k ≥ 2 is such that the claims hold; we verify next that they also hold for k+1. To this end, fix player
i, mildly consistent, finite type t̄i, strategy s̄i ∈ S0

i,k+1(t̄i) such that t̄i ∈ Ti,k+1(s̄i), and conjecture

46Finiteness is immediate. To see that lower-order models are maintained, simply notice that the proba-
bility assigned by µ̄i(h

0) to θ is the same as the probability assigned by µ̄1
i (h

0).
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µ̄i that justifies the inclusion of t̄i in Ti,k+1(s̄i) (and thus the inclusion of s̄i in S0
i,k+1(t̄i)). Let us

now go claim by claim:

Claim (i). First, we know from the induction hypothesis that for any pair (s−i, t−i) in the support
of µ̄i(h

0) there exists some tk−i(s−i, t−i) = (tkj (sj , tj))j ̸=i such that, for every j 6= i, tkj (sj , tj) is finite
and such that µk

j (t
k
j (sj , tj)) = µk

j (tj) and Wj,k+1(t
k
j (sj , tj)) ⊆ [sj |tj ]k−1. Define then µ̄k+1

i (h0) ∈
∆(S−i ×Θ∗ × T ∗

−i) by setting:

µ̄k+1
i (h0)[E] := µ̄i(h

0)
[{
(s−i, θ, t−i) ∈ S−i ×Θ∗ × T ∗

−i

∣∣(s−i, θ, t
k
−i(s−i, t−i)) ∈ E

}]
,

for every measurable E ⊆ S−i ×Θ∗ × T ∗
−i (the finiteness of t̄i guarantees that µ̄k+1

i is well-defined).
For every h ∈ H0

i,k(∆i(t̄i))\{h0} define µ̄k+1
i (h) ∈ ∆(S−i×Θ∗×T ∗

−i) via conditional probability (this
is possible because µ̄i(h

0) assigns positive probability to S−i(h) for every such h); notice then that,
for every h ∈ H0

i,k(∆i(t̄i)) and every measurable E ⊆ S−i × Θ∗, we have that µ̄k+1
i (h)[E × T ∗

−i] =

µ̄i(h)[E × T ∗
−i], and thus, for every h ∈ H0

i,k(∆i(t̄i)) and every si ∈ Si it holds that:∫
S−i×Θ∗

θi(z((s−i, si)|h))d(margS−i×Θ∗ µ̄k+1
i (h)) =

=

∫
S−i×Θ∗

θi(z((s−i, si)|h))d(margS−i×Θ∗ µ̄i(h)). (U)

Then, define compact set:

∆k+1
i := ∆∗

i (t̄i) ∪
{
(θ, tk−i(s−i, t−i))

∣∣(s−i, θ, t−i) ∈ supp µ̄i(h
0)
}
,

and type:
tk+1
i := h∗i (∆

k+1
i ,margΘ∗×T∗

−i
µ̄k+1
i (h0)).

Clearly, tk+1
i is finite and such that µk+1

i (tk+1
i ) = µk+1

i (t̄i).47

Claim (ii). Let us check now that:

Wi,k+2(t
k+1
i ) ⊆ [s̄i|t̄i]k.

To see it fix strategy si ∈ Wi,k+2(t
k+1
i ) and conjecture µi that justifies the inclusion of si in

Wi,k+2(t
k+1
i ). Throughout the remainder of the proof we will make use of some additional notation.

First, for every s−i ∈ S−i for which there is some t−i consistent with t̄i where s−i ∈ S0
−i,k(t−i),

〈s−i〉 :=

s′′−i ∈ S−i

∣∣∣∣∣∣∣∣
There exist t′−i, t

′′
−i ∈ ProjT∗

−i
∆∗(t̄i) and s′−i ∈ Si such that:

(1) s′−i ∈ [s−i|t′−i]k−1

(2) s′′−i ∈ [s′′−i|t′′−i]k−1

 .

Second, for every h ∈ Hi ∪ {h0}, every belief µ′
i ∈ ∆(S−i ×Θ∗ × T ∗

−i) and every s′i ∈ Si, denote:

Ui(s
′
i, µ

′
i|h) :=

∫
S−i×Θ∗

θi(z((s−i, s
′
i)|h))d(margS−i×Θ∗µ′

i).

47Finiteness is immediate. To see that lower-order models are maintained, simply notice that the
probability assigned by µ̄i(h

0) to (s−i, θ, t−i) is the same as the probability assigned by µ̄k+1
i (h0) to

(s−i, θ, t
k
−i(s−i, t−i)), and that the (k − 1)th-order model of tk−i(s−i, t−i) exactly coincides with that of

tk−i (by construction).
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Then, we verify now the the following six facts hold:

(F1) For any s−i ∈ S−i for which there is some t−i consistent with t̄i where s−i ∈ S0
−i,k(t−i), any

s′′−i ∈ 〈s−i〉, and any s′′i ∈ {s̄i, si},

z((s−i, s
′
i)|h0) = z((s′−i, s

′
i)|h0). (S1)

Fix s−i ∈ S−i, t−i consistent with ∆∗
i (t̄i) where s−i ∈ S0

−i,k(t−i), and s′′−i ∈ 〈s−i〉. Then, we
know that there exist s′−i ∈ S−i and t′−i, t

′′
−i consistent with t̄i such that s′−i ∈ [s−i|t′−i]k−1 and

s′′−i ∈ [s′−i|t′′−i]k−1—case in which it holds that, for every j 6= i and every h ∈ HW
j,k−1(∆

∗
j (t

′
j))∩

HW
j,k−1(∆

∗
j (t

′′
j )), s′′j (h) = sj(h). Fix also s′′i ∈ {s̄i, si} and pick player j 6= i such that there

exists some history h ∈ Hj that precedes z((s−i, s
′′
i )|h0) and is reached by s′′j .48 We now

claim that the inclusion h ∈ HW
j,k−1(∆

∗
j (t

′
j)) ∩ HW

j,k−1(∆
∗
j (t

′′
j )) holds; to see it notice that the

following four hold for t′′′j ∈ {t′j , t′′j }:

(a) ((tℓ)ℓ ̸=i,j ; t̄i) is consistent with t′′′j .49

(b) sℓ ∈ Sℓ,k(tℓ) ⊆ W0
ℓ,k−1(tℓ) for every ℓ 6= i, j.

(c) s̄i ∈ S0
i,k+1(t̄i) ⊆ Wi,k−1(t̄i).

(d) si ∈ Wi,k+2(t
k+1
i ) ⊆ Wi,k−1(t̄i).

We thus conclude that s′′j (h) = sj(h) and hence the claim is proved.

(F2) For any s−i ∈ S−i for which there is some t−i consistent with t̄i where s−i ∈ S0
−i,k(t−i), and

for every θ ∈ Θ∗ we have:

µi(h
0)
[
〈s−i〉 × {θ} × T ∗

−i

]
= µ̄i(h

0)
[
〈s−i〉 × {θ} × T ∗

−i

]
. (S2)

Fix (s−i, θ) and develop:

µi(h
0)
[
[〈s−i〉 × {θ} × T ∗

−i

]
=

= µi(h
0)

[
〈s−i〉 × {θ} ×

{
tk−i(s

′
−i, t

′
−i)

∣∣∣∣∣ (1) t′−i ∈ ProjT∗
−i
∆∗

i (t̄i)

(2) (s′−i, t
′
−i) ∈ Graph(S0

−i,k)

}]

(i)
= µi(h

0)

S−i × {θ} ×

tk−i(s
′
−i, t

′
−i)

∣∣∣∣∣∣∣∣
(1) t′−i ∈ ProjT∗

−i
∆∗

i (t̄i)

(2) (s′−i, t
′
−i) ∈ Graph(S0

−i,k)

(3) 〈s−i〉 ∩ [s′−i|t′−i]k−1 6= ∅




= µ̄k+1
i (h0)

S−i × {θ} ×

tk−i(s
′
−i, t

′
−i)

∣∣∣∣∣∣∣∣
(1) t′−i ∈ ProjT∗

−i
∆∗

i (t̄i)

(2) (s′−i, t
′
−i) ∈ Graph(S0

−i,k)

(3) 〈s−i〉 ∩ [s′−i|t′−i]k−1 6= ∅




(ii)
= µ̄k+1

i (h0)


(s′−i, θ, t

k
−i(s

′
−i, t

′
−i))

∣∣∣∣∣∣∣∣
(1) t′−i ∈ ProjT∗

−i
∆∗

i (t̄i)

(2) (s′−i, t
′
−i) ∈ Graph(S0

−i,k)

(3) s′−i ∈ 〈s−i〉




48I.e., such that (s−i, s
′′
i ) ∈ S(h) and s′′j ∈ Sj(h). We do not have to worry about players j that lack such

history h: they do not make any choice along the path leading to z((s−i, s
′′
i )|h0).

49Remember that t̄i is mildly consistent and thus, if t′′′j and tℓ are consistent with t̄i then t̄i and tℓ are
consistent with t′′′j .
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(iii)
= µ̄i(h

0)


(s′−i, θ, t

′
−i)

∣∣∣∣∣∣∣∣
(1) t′−i ∈ ProjT∗

−i
∆∗

i (t̄i)

(2) (s′−i, t
′
−i) ∈ Graph(S0

−i,k)

(3) s′−i ∈ 〈s−i〉




= µ̄i(h
0)
[
〈s−i〉 × {θ} × T ∗

−i

]
.

(F3) For any h ∈ HW
i,k(∆

∗
i (t̄i)) ∩Hi(s̄i) and any s−i ∈ S−i for which there is some t−i consistent

with t̄i where s−i ∈ S0
−i,k(t−i), and any θ ∈ Θ∗ we have:

µi(h)
[
〈s−i〉 × {θ} × T ∗

−i

]
= µ̄i(h)

[
〈s−i〉 × {θ} × T ∗

−i

]
. (S3)

Fix history h ∈ HW
i,k(∆

∗
i (ti)) ∩Hi(s̄i) and pick s−i ∈ S−i(h) and t′−i consistent with t̄i such

that s−i ∈ S0
−i,k(t

′
−i). Then, for every s′−i ∈ [s−i|t′−i]k−1 we have that [s′−i|t′′′−i]k−1 ⊆ S−i(h)

for every t′′−i consistent with t̄−i where s′−i ∈ S0
−i,k(t

′′
−i). To see it, pick s′′−i ∈ [s′−i|t′′−i]k−1, and

player j 6= i with some history h′ ∈ Hj that precedes h. Notice then that h′ ∈ HW
j,k−1(∆

∗
i (tj))∩

HW
j,k−1(∆

∗
i (t

′′
j )) is a consequence of these four facts:

(a) ((t′ℓ)ℓ ̸=i,j , t̄i) is consistent with both t′j and t′′j .

(b) sℓ ∈ S0
ℓ,k(t

′
ℓ) ∩ Sℓ(h) ⊆ Wℓ,k−1(t

′
ℓ) ∩ Sℓ(h) for every ℓ 6= i, j.

(c) s̄i ∈ S0
i,k+1(t̄i) ∩ Si(h) ⊆ Wi,k−1(t̄i) ∩ Si(h).

(d) h′ precedes h.

It follows then that s′′j (h′) = s′j(h
′) = sj(h

′) and thus, that s′′−i ∈ S−i(h). Hence, 〈s−i〉 ⊆
S−i(h) and, in consequence, there must exist some s1−i, . . . , s

M
−i ∈ S−i(h) such that the family

{〈s1−i〉, . . . , 〈sM−i〉} is a partition of S−i(h). As a result:

µi(h
0)[S−i(h)×Θ∗ × T ∗

−i] =

M∑
m=1

µi(h
0)[〈sm−i〉 ×Θ∗ × T ∗

−i]

=

M∑
m=1

µ̄k+1
i (h0)[〈sm−i〉 ×Θ∗ × T ∗

−i]

= µ̄k+1
i (h0)[S−i(h)×Θ∗ × T ∗

−i].

Remember now that µ̄k+1
i (h0) puts positive probability on S−i(h) × Θ∗ × T ∗

−i and thus, we
have that, for every (s−i, θ, t−i) in the support of µ̄i(h

0),

µ̄k+1
i (h)[〈s−i〉 × {θ} × T ∗

−i] =
µ̄k+1
i (h0)[(S−i(h) ∩ 〈s−i〉 × {θ} × T ∗

−i]

µ̄k+1
i (h0)[S−i(h)×Θ∗ × T ∗

−i]

=
µ̄i(h

0)[(S−i(h) ∩ 〈s−i〉 × {θ} × T ∗
−i]

µ̄i(h0)[S−i(h)×Θ∗ × T ∗
−i]

= µ̄i(h)[〈s−i〉 × {θ} × T ∗
−i].

(F4) It holds that:
HW

i,k(∆
∗
i (t

k+1
i )) ∩Hi(s̄i) = H0

i,k(∆
∗
i (t̄i)) ∩Hi(s̄i). (S4)

For the westwards inclusion, notice first that we know that margS−i
µi(h

0)[S−i(h)] = 0 for
every h /∈ HW

i,k+1(∆
∗
i (t

k+1
i )). Now, we also know that margS−i

µi(h
0)[S−i(h)] > 0 for every
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h ∈ H0
i,k(∆

∗
i (t̄i)). Hence, H0

i,k(∆
∗
i (t̄i)) ⊆ HW

i,k(∆
∗
i (t

k+1
i )). For the eastwards inclusion, we have

that:

HW
i,k+1(∆

∗
i (t

k+1
i )) ∩Hi(s̄i) =

= Hi(s̄i) ∩

h ∈ Hi ∪ {h0}

∣∣∣∣∣∣∣S−i(h) ∩
⋃

t−i∈ProjT∗
−i

∆∗
i (t

k+1
i )

W−i,k+1(t−i) 6= ∅


⊆ Hi(s̄i) ∩

h ∈ Hi ∪ {h0}

∣∣∣∣∣∣∣S−i(h) ∩
⋃

t−i∈ProjT∗
−i

∆∗
i (t̄i)

⋃
s−i∈S0

−i,k(t−i)

[s−i|t−i]k−1 6= ∅


Now, fix history h in the last set above. We know that there exist some t−i ∈ ProjT∗

−i
∆∗

i (t̄i),
some s−i ∈ S0

−i,k(t−i) and some s′−i ∈ [s−i|t−i]k−1 such that s′−i ∈ S−i(h). We also know
that s̄i ∈ Si(h). Now, we can write:

h = (h0, a1, a2, . . . , an),

where, for each k = 1, . . . , n, ak is a description of the actions chosen by the players active
at hk−1 = (h0, a1, . . . , ak−1). Then, we proceed inductively. For every j 6= i such that
h0 ∈ Hj we have that h0 ∈ HW

j,k−1(∆
∗
j (tj)) ∩Hj(sj) (and, in case that h ∈ Hi, also that h0 ∈

HW
i,k−1(∆

∗
i (ti)) ∩Hi(s̄i)) and thus, that sj(h0) = s′j(h

0). Obviously, it follows that, for every
j 6= i such that h1 ∈ Hj , we have that h1 ∈ HW

j,k−1(∆
∗
j (tj))∩Hj(sj) (and, in case that h ∈ Hi,

also that h0 ∈ HW
i,k−1(∆

∗
i (ti)) ∩ Hi(s̄i)) and thus, again, that sj(h1) = s′j(h

1). Continuing
inductively establishes thus that s−i and s′−i choose identically at every h′ preceding h and
thus, that s−i ∈ S−i(h). This implies then that:

Hi(s̄i)∩

h ∈ Hi ∪ {h0}

∣∣∣∣∣∣∣S−i(h) ∩
⋃

t−i∈ProjT∗
−i

∆∗
i (t̄i)

⋃
s−i∈S0

−i,k(t−i)

[s−i|t−i]k−1 6= ∅

 ⊆

⊆ Hi(s̄i) ∩

h ∈ Hi ∪ {h0}

∣∣∣∣∣∣∣S−i(h) ∩
⋃

t−i∈ProjT∗
−i

∆∗
i (t̄i)

S0
−i,k(t−i) 6= ∅


= Hi(s̄i) ∩ H0

i,k(∆
∗
i (t̄i)).

(F5) For any h ∈ HW
i,k(∆

∗
i (t

k+1
i )) ∩Hi(s̄i) and any s′i ∈ {s̄i, si} we have that:

Ui(µi, s
′
i|h) = Ui(µ̄

k+1
i , s′i|h) (S5)

Fix history h ∈ HW
i,k(∆

∗
i (t

k+1
i )) ∩ Hi(s̄i) = H0

i,k(∆
∗
i (t̄i)) ∩ Hi(s̄i) (notice the use of (S4))

and pick again s1−i, . . . , s
M
−i ∈ S−i(h) such that the family {〈s1−i〉, . . . , 〈sM−i〉} is a partition of

S−i(h). Since µ̄k+1
i (h0) has finite support on Θ∗ (and hence also does µi(h

0)) we have that,
for any s′i ∈ {s̄i, si},

Ui(µi, s
′
i|h) =

M∑
m=1

∑
(s−i,θ)∈⟨sm−i⟩×Θ∗

µi(h)[{(s−i, θ)} × T ∗
−i]θi(z((s−i, s

′
i)|h)) =
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=

M∑
m=1

∑
θ∈Θ∗

µi(h)[〈sm−i〉 × {θ} × T ∗
−i]θi(z((s

m
−i, s

′
i)|h))

=

M∑
m=1

∑
θ∈Θ∗

µ̄k+1
i (h)[〈sm−i〉 × {θ} × T ∗

−i]θi(z((s
m
−i, s

′
i)|h))

=

M∑
m=1

∑
(s−i,θ)∈⟨sm−i⟩×Θ∗

µ̄k+1
i (h)[{(s−i, θ)} × T ∗

−i]θi(z((s−i, s
′
i)|h))

= Ui(µ̄
k+1
i , s′i|h),

the second and fourth equalities following from (S1) and the third, from (S3).

(F6) It holds that:
si ∈ [s̄i|t̄i]k−1 (S6)

Proceed by contradiction and suppose that there exists some history h̄ ∈ HW
i,k(∆

∗
i (t

k+1
i )) ∩

Hi(s̄i) = H0
i,k(∆

∗
i (t̄i)) ∩ Hi(s̄i) such that si(h̄) 6= s̄i(h̄) (notice the use of (S4)). Pick then

strategy ŝi that maximizes Ui( · , µ̄i|h) at every h that weakly follows h̄. Then, define a new
strategy s0i by setting:

s0i (h
′) :=


ŝi(h) if S−i(h) ⊊ S−i(h̄),
si(h) h = h̄,
s̄i(h) otherwise,

for every h ∈ Hi. Let’s check next that s0i ∈ ri(µ̄i). To this end, notice that every h ∈ Hi∪{h0}
falls in some of the following categories:

• S−i(h) ⊊ S−i(h̄). By construction of s0i , we have that Ui(s
0
i , µ̄i|h) = Ui(ŝi, µ̄i|h). Thus,

s0i maximizes Ui( · , µ̄i|h).

• h = h̄. The above, together with s0i (h) = si(h), implies that:50

Ui(s
0
i , µ̄i|h) ≥ Ui(si, µ̄i|h) = Ui(si, µ̄

k+1
i |h).

Now, we also have that:51

Ui(si, µ̄
k+1
i |h) = Ui(si, µi|h) ≥ Ui(s̄i, µi|h) = Ui(s̄i, µ̄

k+1
i |h) = Ui(s̄i, µ̄i|h),

and remember that s̄i maximizes Ui( · , µ̄i|h). Consequently, s0i maximizes Ui( · , µ̄i|h).

• S−i(h̄) ⊊ S−i(h). By construction of s0i , and because of the facts that Ui(s
0
i , µ̄i|h̄) =

Ui(s̄i, µ̄i|h̄) and s0i and s̄i coincide at every history h preceding h̄, we have Ui(s
0
i , µ̄i|h) =

Ui(s̄i, µ̄i|h). In consequence, since s̄i maximizes Ui( · , µ̄i|h) it follows that s0i must
maximize Ui( · , µ̄i|h) as well.

• For any other h, clearly, we have that Ui(s
0
i , µ̄i|h) = Ui(s̄i, µ̄i|h).

We thus reach a contradiction: s0i /∈ [s̄i|t̄i]k but s0i ∈ ri(µ̄i) = [s̄i] ⊆ [s̄i|t̄i]k.

Consequently, Wi,k+2(t
k+1
i ) ⊆ [s̄i|t̄i]k. ■

50For the first inequality notice that s0i and si coincide at h = h̄ and that s0i maximizes Ui( · , µ̄i|h′) for
every h′ strictly following h. The equality follows from (U) above.

51The first two equalities follow from (S4) and the last, from equation (U) above. The inequality is a
consequence of si being a best-reply to µi.
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E.3 Proof of the result

Theorem 3. Let (E ,T ∗) be a dynamic Bayesian game and let t be a consistent profile of finite,
information-based types. Then, the predictions of strong rationalizability for t admit unique selections
via weak rationalizability.

Proof. Fix a profile of information-based consistent types t ∈ T ∗ and a profile of strategies s ∈ S(t).
We know that for every k ≥ 2 and every player i:

(a) From Lemma 10, that there exists some sequence of finite, mildly consistent types (tk,ni )n∈N

converging to ti such that, for every n ∈ N, si ∈ S0
i,k(t

k,n
i ) and:

Hi,k−1(∆
∗
i (t

k,n
i )) = Hi,k−1(∆

∗
i (ti)).

(b) Then, from Lemma 11, that for every n ∈ N there exists a sequence of finite, mildly consistent
types (tk,n,ℓi )ℓ∈N converging to tk,ni such that, for any ℓ ∈ N, tk,n,ℓi ∈ Ti,k(si) and:

Hi,k−1(∆
∗
i (t

k,n,ℓ
i )) = Hi,k−1(∆

∗
i (ti)).

For each player i and m ∈ N set t̄mi := tnm,nm,m
i . Then, we know then that for any player i:

(c) From Lemma 12, that there exists a finite type tnm
i such that µnm

i (tnm
i ) = µnm

i (t̄mi ) and:

Wi(t
nm
i ) ⊆ Wi,nm+1(t

nm
i ) ⊆ [si|tnm

i ]nm−1,

and:
HW

i,nm−1(∆
∗
i (t

nm
i )) ∩Hi(si) = Hi,nm−1(∆

∗
i (ti)) ∩Hi(si).

Clearly, it also holds that:

[si|tnm
i ]nm−1 =

{
s′i ∈ Si

∣∣∣s′i(h) = si(h) for every h ∈ HW
i,nm−1

(∆∗
i (t

nm
i )) ∩Hi(si)

}
=
{
s′i ∈ Si

∣∣s′i(h) = si(h) for every h ∈ Hi,nm−1
(∆∗

i (ti)) ∩Hi(si)
}

⊆ {s′i ∈ Si |s′i(h) = si(h) for every h ∈ Hi(∆
∗
i (ti)) ∩Hi(si)} .

Thus, if for each m ∈ N and player i we set t̃m := tnm
i we have found a sequence of profiles of types

(t̃m)m∈N converging to t and such that, for any player i and any m ∈ N,

Wi(t̃
m) ⊆ {s′i ∈ Si |s′i(h) = si(h) for every h ∈ Hi(∆

∗
i (ti)) ∩Hi(si)} .

Now, fix m ∈ N and sm ∈ W(t̃m). Let J ⊆ I be the set of those players i for which h0 ∈ Hi. Clearly,
h0 ∈ HW

i (∆∗
i (ti)) ∩Hi(si) and thus, it must hold that smi (h0) = si(h

0). Then, obviously, for every
player j such that (h0, (smi (h0))i∈J) ∈ Hj , it holds that (h0, (smi (h0))i∈J) ∈ HW

j (∆∗
j (tj))∩Hi(si) as

well (remember that t is consistent). Hence, an easy inductive argument enables to conclude that
z(sm|h0) = z(s|h0). ■
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