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Abstract

We study the optimal jury composition in a lottery contest game, where
each jury member can be biased towards a particular contestant. In our model,
a bias in favor of contestant i increases his probability of winning and is the
outcome of the voting game between the jury members. We show that the opti-
mal jury composition strongly depends on the degree of heterogeneity between
the contestants. Specifically, when heterogeneity is high, appointing a jury fa-
voring a less talented contestant and, hence, levelling the playing field will max-
imize the aggregate effort. At the same time, if the designer aims at maximiz-
ing the probability of a more talented contestant winning, she does equally well
with any possible jury composition. When heterogeneity is low, a jury favor-
ing a more talented contestant promotes the highest probability of his winning,
although the designer does not necessarily strive to infinitely increase the bias
size expecting favoritism towards a more talented contestant. Meanwhile, the
aggregate effort is the same for each possible jury composition.

Keywords: contest design, committee composition, optimal bias
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1 Introduction & Related literature

It is common practice to delegate prize allocation in rent-seeking contests to a
committee of experts. For instance, a firm’s owner frequently devolves a CEO
hiring decision to a Board of directors. At university, an admission committee
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is assigned to accept appropriate candidates for a PhD program. In some pro-
fessional sports, e.g., dancesport and figure skating, athletes are rewarded for
their performance by a panel of judges.

A reasonable explanation why such delegation occurs is because of a poten-
tial bias of a decision maker towards particular contestants due to either her
intrinsic tastes and attitudes, in the absence of direct performance measure-
ments, or payoffs that follow after a favorable contestant winning. When first
considered, the appointment of a committee aims at elimination of biases of
individual experts. Meanwhile, not every aggregation technique provides un-
biased rewarding, and fair prize allocation is not necessarily an end in itself
of such delegation. On the contrary, the control of aggregate bias of the com-
mittee members proves to be an instrument for manipulating the efforts of
competitors.

In this paper, we ask what jury composition is optimal to appoint by the con-
test designer if jury members are potentially biased. To answer the question
of interest, we propose a stylized theoretical model. Our study contributes
to the theory unifying optimal biased contests and decision-making in com-
mittees by introducing biased jury members. Perhaps surprisingly, the un-
biased committee composition is suboptimal to stimulate the contestants.
Meanwhile, only a small bias might be sufficient to maximize chances of the
stronger contestant winning.

The proposed theoretical model is based on a sequential move game. By back-
ward induction, we first define the equilibrium efforts of two heterogeneous
contestants competing for a single prize in the lottery contest. The chance to
win may be increased for one of the contestants by a bias provided by an ap-
pointed jury of potentially biased reviewers via voting procedure. Next, we
study the equilibrium strategy of each jury member in the voting game. The
contest designer moves first and decides on the jury composition and the opti-
mal bias size.

We found that the clue of the optimal contest is degree of heterogeneity be-
tween the contestants. If the degree of heterogeneity is sufficiently large, the
contest designer appoints a jury that favors a weaker contestant to create
even playing field if she benefits from the total effort. If the degree of hetero-
geneity is sufficiently small, the contest designer appoints a jury that favors a
stronger contestant to strengthen his chances of winning if that is her objec-
tive point.

This paper is related to two research fields. First, it stands close to the lit-
erature on the optimal biased contests. Second, our study is strongly associ-
ated with the literature on decision making in committees. Accordingly, the
main contribution of the study is to the literature that unifies contests and
decision-making committees, in particular, considering optimal bias provided
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by members of a jury appointed by the contest designer.

A substantial body of theoretical literature on the rent-seeking concept, i.e.,
contests, originates from Tullok (1980). To date, a great deal of previous re-
search has focused on various design-related questions, e.g., optimal contest
format, optimal prize-allocation across stages in dynamic tournaments, op-
timal seeding rule in elimination contests, and many others. Regarding the
question addressed, it seems worth noticing the existing results on biased con-
tests and contests with head starts. The effect of head starts on multiprize
contest model are examined in (Siegel 2014). With identical valuations and
homogeneous prizes proposed, the equilibrium strategic profile is character-
ized by weaker contestants’ more aggressive behavior than of stronger ones.

Favoritism is studied in an asymmetric contest framework in (Kirkegaard
2012). It has been shown that contestants’ heterogeneity determines an in-
strument that proves to be optimal to regulate the asymmetry. Providing a
head start to a weaker contestant allows to increase total effort exerted by the
contestants, but in some cases, the maximum total effort can be obtained by
introducing both handicap and head start to a weaker contestant. The opti-
mality of employing handicap to a stronger contestant is also not intuitively
straightforward and depends on the degree of heterogeneity among contes-
tants. In (Fu and Wu 2020) the optimal design of biased contests is studied
concerning various instruments, such as implementing additive head start and
multiplicative bias. Efficacy analysis of different favoritism instruments is in-
vestigated in (Franke et al. 2018).

In all these studies, implementing an instrument to manipulate efforts and
the contest outcome is deterministic, i.e., the contestants are aware of the
head start or bias provision. We study a contest setting where the employ-
ment of the bias is private information of the jury.

For an extensive review of the theoretical results on decision-making in com-
mittees, see (H. Li and Suen 2009). The review covers, among other things,
the optimal committee composition problem treating committee members
as heterogeneous in preferences and possessing private information of their
preferences. In (Yildirim et al. 2018), the study focuses on the optimal com-
position of a committee of biased experts from the perspective of a status quo
biased principal. Optimal composition proves to be non-monotonic in the ma-
jority rule. In (H. Li, Rosen, et al. 2001), information sharing is studied when
committee members have conflicting preferences. Information manipulation
and strategical voting are examined as motivated by reputational regards in
committees with experts having different preferences in (Visser and Swank
2007). Decision-making of careerist experts is studied from the focus of trans-
parency in (Levy 2007a; Levy 2007b).

A search of the literature revealed few studies which put decision-making
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committee within the Tulluck contest framework. The first discussion of such
a contest format is in (Congleton 1984). The study compares equilibrium
strategies between contests under committee administration and with a single
administrator. In (Amegashie 2002), Congleton’s model is modified in voting
by committee members is treated as probabilistic. The evidence obtained in
(Amegashie 2003), where the author develops the model by introducing caps
on the efforts, shows that in some cases (with properly chosen caps) aggregate
effort can be higher than in the case of a single administrator. In (Lockard
2006), Congleton’s results are also reexamined considering a proportionate-
sharing rule. Committee composition issue is raised in (Amegashie 2006), but
the focus is on comparing known and unknown composition. Optimal com-
mittee size in such a contest format is investigated in (S. Li et al. 2013).

So, while some research has been carried out on committee decision making
within a rent-seeking contest framework, there is need to study how introduc-
ing biased reviewers as jury members affects the contest result, when mem-
bers of a jury decide on the bias provision. We showed that the clue to the
optimal contest is degree of heterogeneity between the contestants.

The paper proceeds as follows. Section 2 describes the theoretical model and
the equilibrium behavior of the contestants and the jury members. Section 3
represents the optimal contest considering both the optimal bias size and the
optimal jury composition for each utility specification of the designer. Section
4 concludes.

2 Model Setup

There are two contestants, indexed by i ∈ {1, 2}, competing for an indivisible
prize by choosing effort ei ≥ 0, simultaneously and independently. Let the
cost function of contestant i be linearly increasing, and the contestants are
heterogeneous with respect to the marginal costs, i.e., ci(ei) := ciei. Suppose
0 < c1 < c2, so the first contestant may be viewed as a more talented one.
Each contestant is risk neutral, values the prize at 1 and the loss at 0, and
chooses the effort to maximize expected payoff:

πi(ei) := Pi − ciei,

where Pi := Pi(e1, e2, b) is the probability contestant i wins, defined as:

Pi(e1, e2, b) :=


ei

ei+e−i
, if bias is not provided, e2

1 + e2
2 > 0;

bei
bei+e−i

, if bias is provided to contestant i, e2
1 + e2

2 > 0;
ei

ei+be−i
, if bias is provided to contestant − i, e2

1 + e2
2 > 0;

1
2 , if e2

1 + e2
2 = 0.
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We use a modification of the Tullock success function that allows for a mul-
tiplicative1 bias b > 1 (see Franke et al. 2018, Fu and Wu 2020). Either it is
provided to one of the contestants and increases his probability of winning or
it is not provided to anyone at all. If both contestants exert zero effort, the
prize goes to each of them with equal probability.

The bias provision may be blocked by the contest designer or it can be del-
egated to a jury of experts, appointed by the designer. Suppose such a jury
consists of three reviewers, indexed by j ∈ J := {1, 2, 3}. For j 6= 3, two
types are possible: biased towards contestant i = j or unbiased. Jury mem-
ber j = 3 is assumed unbiased. Denote biased type by jb and unbiased type
by jb̄. A biased reviewer benefits from her favorite’s winning. Assuming risk-
neutrality, let the utility of the biased type coincide with the probability of a
corresponding contestant winning. A jury member does not benefit from the
bias provision if she turns out to be unbiased, but is better off if the bias is
not provided. So, the utility of jury member j is given by:

vj(e1, e2, b) :=


Pj(e1, e2, b), if jury member j = jb;

0, if jury member j = jb̄ and the bias is provided;

1, if jury member j = jb̄ and the bias is not provided.

Denote the probability of the first (resp. second) jury member being biased
with p (resp. q):

Pr(1 = 1b) = p ∈ {0, 1},
P r(2 = 2b) = q ∈ {0, 1}.

We also assume that the types of the two potentially biased jury members are
uncorrelated.

It is up to the contest designer to determine size of the bias b as well as the
jury composition. We consider two standard specifications of a utility func-
tion the designer may be willing to maximize. Either the designer profits
from the total effort exerted by the contestants:

u1(b) := e1(b) + e2(b),

or the designer profits from winning of a more talented contestant:

u2(b) := P1(b).

To maximize utility, the designer can choose among four jury compositions:
(i) p = q = 1, (ii) p = 1, q = 0, (iii) p = 0, q = 1, and (iv) p = q = 0.

1We do not consider provision of an additive head start ai ∈ R to manipulate the contest outcome, as
any designer-optimal linear transformation fi(ei) = ai + biei can be replaced with f̃i(ei) = b̃iei, i.e., ãi = 0
and f̃i(ei) = f(ei) (see Theorem 2 in Fu and Wu 2020).

5



If the bias provision is allowed by the designer, i.e., it is optimal to set b∗ > 1,
the bias provision is delegated to the appointed jury. Firstly, the jury decides
whether any of the contestants receives the bias via majority vote. If the pro-
vision is accepted, they next vote for the bias recipient2. Assume strategic
voting. Figure 1 demonstrates the scheme of sequential voting.

Figure 1: Scheme of the Voting Process

Jury votes for the bias provision

Unbiased contest

No
Jury votes for the bias recipient

Contest with the bias provided to contestant 1

1

Contest with the bias provided to contestant 2

2

Yes

The contestants exert efforts being unaware of the jury’s decision, but they
observe the appointed jury composition.

The model presents a sequential move game. The game proceeds as follows:

1. the designer appoints a jury and decides to either allow the bias provi-
sion and choose optimal size b > 1 or block the bias provision;

2. if the bias provision is not blocked, the jury sequentially votes for the
bias provision and the bias recipient;

3. the contestants choose optimal effort to exert.

We use backward induction to solve for equilibrium behavior of the players.

2.1 Equilibrium in the game between contestants

Since the contestants are not aware of the bias provision, we introduce θi ∈
[0, 1] to denote the probability contestant i is a bias recipient. The comple-
mentary 1 − θ1 − θ2 ∈ [0, 1] indicates the probability the bias is not provided.
Then for each pair θ1, θ2, contestant i solves:

max
ei≥0

{
θi

bei
bei + e−i

+ θ−i
ei

ei + be−i
+ (1− θ1 − θ2)

ei
ei + e−i

− ciei
}
.

2The jury votes sequentially to break the Condorcet cycle.
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The following proposition describes the equilibrium behavior of the contes-
tants.

Proposition 1. For any θ1, θ2 and b > 1, the Nash equilibrium of the contest
game is unique. In this equilibrium, contestant i exerts the effort of e∗i (b, θ1, θ2):

e∗i (b, θ1, θ2) =
1

ci
· c1

c2

[
θ1b

(b+ c1
c2

)2
+

θ2b

(1 + bc1c2 )
2

+
1− θ1 − θ2

(1 + c1
c2

)2

]
,

and the equilibrium probabilities of winning are:

P ∗1 (b, θ1, θ2) = θ1
b

b+ c1
c2

+ θ2
1

1 + bc1c2
+ (1− θ1 − θ2)

1

1 + c1
c2

,

P ∗2 (b, θ1, θ2) = θ1

c1
c2

b+ c1
c2

+ θ2

bc1c2
1 + bc1c2

+ (1− θ1 − θ2)

c1
c2

1 + c1
c2

.

Proof. See Appendix.

The result is obtained by solving a system of first order conditions, which suf-
ficiency is guaranteed by strict convexity of the objective functions. For both
contestants, an outside option, i.e., to exert zero effort, is a strictly dominated
strategy.

Let us briefly describe the comparative statics of the contestants’ equilibrium
effort. In equilibrium, the costs incurred are equal, i.e., c1e

∗
1(b, θ1, θ2) =

c2e
∗
2(b, θ1, θ2). The ratio c1

c2
∈ (0, 1) reflects a degree of heterogeneity be-

tween the contestants. The lower the ratio of marginal costs, which implies
the higher degree of heterogeneity, the closer the equilibrium efforts become
to 0, and the equilibrium probabilities of winning are balanced in favor of
contestant 1. If the ratio c1

c2
is close to 1, which corresponds to the case of

homogeneity, the contestants exert approximately equal efforts and the equi-
librium probabilities of winning depend only on the probabilities of the bias
provision θ1 and θ2. The closer the bias size to 1, the less θ1 and θ2 affect an
outcome of the game.

Following the concept of sequential equilibrium proposed by Kreps and Wil-
son (1982), we now treat θ1 and θ2 as beliefs the contestants hold about the
bias provision. We are able to solve for the fully consistent beliefs immedi-
ately after equilibria in the game between the jury members are defined.
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2.2 Equilibrium in the sequential voting game of the

jury members

Suppose the bias provision is not blocked by the contest designer, and the
jury decides on it.

Let σtj denote a vote cast by jury member j in voting t ∈ {1, 2}. In the first
voting, the jury votes for provision of the bias, no matter who is a recipient.
Let σ1j ∈ {Y,N}, where Y stands for vote ’Yes’, i.e., provide the bias, and N
stands for ’No’.

Let σ2j ∈ {1, 2} indicate who of the contestants is proposed by jury member
j as the bias recipient. A profile of votes in voting t is denoted by σt, σ1 ∈
{Y,N}3, σ2 ∈ {1, 2}3. Let σ = (σ1, σ2) be a notion for a profile of votes in
the two sequantial votings. Let σ be equivalently an element of a set Σ :=
{{Y,N} × {1, 2}}3.

Our second result is a set of equilibria in a sequential voting game of the jury
members for each possible composition given by p and q. Only pure strategies
are considered.

Proposition 2. For any p + q > 0, there exist an equilibrium profile σ∗ ∈ Σ
supporting a system of beliefs θ∗1 ∈ [0, 1], θ∗2 ∈ [0, 1] : θ∗1 + θ∗2 = 1.

• Each equilibrium profile of votes σ∗, such that ∃ j1 6= j2: σ∗1j1 = σ∗1j2 = Y
and σ∗2j1 = σ∗2j2 = 1 implies θ∗1 = 1, θ∗2 = 0 as the fully consistent beliefs.

• For equilibrium profile of votes σ∗, such that ∃ j1 6= j2: σ∗1j1 = σ∗1j2 = Y
and σ∗2j1 = σ∗2j2 = 2 the fully consistent beliefs are θ∗1 = 0, θ∗2 = 1.

• Each equilibrium profile of votes σ∗, such that ∃ j1 6= j2: σ∗1j1 = σ∗1j2 = N
implies θ∗1 = θ∗2 = 0 as the fully consistent beliefs.

Proof. See Appendix.

So, if the designer delegates the bias provision to a jury with at least one bi-
ased reviewer, we can expect an equilibrium with the bias provided to one of
the contestants (see the list of equilibria for each p, q in Appendix). In ev-
ery equilibrium obtained, no jury member is better off by deviating from her
votes cast. The bias provision is a possible equilibrium outcome of the voting
game only under unanimity of the jury members.

It is also worth noticing that the presence of a single biased jury member,
say, favoring contestant i, does not necessarily imply contestant −i never re-
ceiving the bias in equilibrium, though two times less likely to occur if take
the equilibria as equiprobable. This may happen because of indifference of
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the remaining unbiased jury members when at first they cast votes for the
bias provision. Since they are indifferent, they can both cast vote in favor of
contestant −i, so the biased jury member cannot affect the bias provision in
favor of contestant i.

Consistent beliefs of the contestants about an outcome of the voting game are
defined by implementing the Bayes’ rule. The fact that the beliefs θ∗1 and θ∗2
for each equilibrium profile of votes σ are fully consistent results from the ex-
istence of a sequence εk → 0, such that a sequence of the jury members’ trem-
bled strategies σ(εk) → σ induces the sequences of the probabilities defined
be the Bayes’ rule θ1(εk)→ θ∗1 and θ2(εk)→ θ∗2.

Substituting the fully consistent beliefs θ∗1, θ
∗
2 into the expression for the equi-

librium effort ei(b, θ
∗
1, θ

∗
2), defined in Proposition 1, along with a correspond-

ing equilibrium profile of votes σ, gives a sequential equilibrium. If it is be-
lieved that the bias is provided to contestant 1, the equilibrium effort of con-
testant i is given by:

e∗i (b) =
1

ci
· c1

c2

b

(b+ c1
c2

)2
.

If the contestants believe that the bias is provided to contestant 2, the equi-
librium effort of contestant i is defined as:

e∗i (b) =
1

ci
· c1

c2

b

(1 + bc1c2 )
2
.

Belief that the bias is not provided results in the following equilibrium effort
of contestant i:

e∗i (b) =
1

ci
· c1

c2

1

(1 + c1
c2

)2
.

The obtained equilibrium behaviors of the contestants and the jury members
allow us to determine the optimal design of such a contest.

3 The Optimal Contest

The designer is able to manipulate the contest outcome by blocking the bias
provision or delegating it to the jury of experts with a fixed b > 1. Appoint-
ment a certain composition of the jury, given by p and q, is another tool the
designer has to gain maximum utility. Note that blocking the bias provision
is equivalent to setting b = 1 or appointing the jury of unbiased experts, i.e.,
p = q = 0.
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3.1 The designer maximizes the total effort

First, we determine optimal size of the bias b∗ for each p, q if the designer
benefits from the total effort exerted by the contestants. To resolve uncer-
tainty about an equilibrium realizing in the voting game, we assume each one
occurs with equal probability and the designer is risk-neutral. So, the follow-
ing problem must be solved:

max
b≥1

{
w1u1(b, 1, 0) + w2u1(b, 0, 1) + (1− w1 − w2)u1(b, 0, 0)

}
,

where wi stands for the probability contestant i receives the bias. Here, b∗ =
1 essentially means blocking the bias provision, and b∗ > 1 corresponds to a
setting where the bias provision is delegated to the jury of experts.

If count the equilibria for p = q = 1, w1 = w2 = 2/12. Both contestants
receive the bias with the same probability.

Proposition 3. Consider a jury with two biased experts, i.e., p = q = 1,
and the designer, seeking to maximize the total effort. For c1

c2
≥ 2 −

√
3, the

designer blocks the bias provision, that is b∗ = 1. For c1
c2
< 2−

√
3, the designer

delegates the bias provision to the jury, and the optimal bias is:

b∗ =

(
c1
c2

)4
−6
(

c1
c2

)2
+1

c1
c2

[
1+
(

c1
c2

)2] +

√√√√√
(

c1
c2

)4
−6
(

c1
c2

)2
+1

c1
c2

[
1+
(

c1
c2

)2]
2

− 4

2
> 1.

Proof. See Appendix.

Proposition 3 indicates that the bias provision may both positively and neg-
atively affect the contestants’ incentives under uncertainty about the voting
game result. If the degree of heterogeneity is sufficiently small, i.e., c1

c2
is close

to 1, non-zero chances to receive the bias discourage the contestants to exert
higher efforts. Hence, the contest designer benefits from status quo blocking
the jury providing the bias. Meanwhile, the sufficiently large degree of het-
erogeneity, i.e., c1

c2
is close to 0, implies the contest designer setting the bias

b∗ > 1 to provoke the contestants play more aggressively. Moreover, the
greater the degree of heterogeneity, the higher is the optimal bias.

Unfortunately, the analytical solution for p = 1, q = 0 and p = 0, q = 1 is
not as easy to derive as for p = q = 1. Instead, we found a numerical solution
to these jury compositions. Figure 2 demonstrates the same effect of the bias
provision.
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Figure 2: The Total Effort Exerted by the Contestants as a Function of the
Bias Size and The Jury Composition
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Note: this figure indicates existence of the bias b∗ > 1 maximizing the designer’s utility for sufficiently large
degree of heterogeneity between the contestants. The left plot is for the jury with one member biased towards
the first contestant, the right plot is for the jury with one member biased towards the second contestant. In
both simulations, b takes values between 1 and 160 with a step of 0.1.

Result 1. If degree of heterogeneity between the contestants is sufficiently
large, there is b∗ > 1 that maximizes the total effort exerted by the contes-
tants. For the sufficiently small degree of heterogeneity, the contest designer
blocks the bias provision.

To simulate behavior of the utility function of the designer, we substituted
w1, w2. Note that wi = 2w−i if the jury composition is in favor of contestant
i. The total effort is calculated excluding a multiplier ( 1

c1
+ 1

c2
)c1c2 > 0 to avoid

setting exact values for c1, c2 as their ratio is what really affects the contest
outcome.

One can notice that for c1
c2

= 0.2 the jury composition with a single expert
favoring contestant 1 implies blocking the bias provision, while another com-
position still requires the rational designer to set b∗ > 1. This may serve as an
evidence the critical level of heterogeneity is greater for p = 0, q = 1 than for
p = 1, q = 0.

Another important observation is that the maximum value of the designer’s
utility is noticeably greater for the case p = 0, q = 1, but for the small degree
of heterogeneity this is not evident. Figure 2 also shows that the optimal bias
size exists, i.e., it is finite. So, by using the bias the designer creates an even
playing field, to equalize the ex ante heterogeneous contestants, encourage
them to exert greater efforts and consequently obtain greater utility.

To complete our analysis of the optimal contest for the case where the total
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effort is maximized, we determine the optimal jury composition if b is fixed
at its optimal level b∗ for each composition. Figure 3 represents numerical
simulations for this specification of the designer’s utility.

Figure 3: Maximum Total Effort for Different Jury Compositions and the
Degree of Heterogeneity Between the Contestants
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Note: this figure shows order of the designer’s maximum utility for feasible compositions of the jury.
Maximum total effort is divided by ( 1

c1
+ 1

c2
) c1
c2
> 0 (exclusion of this multiplier obviously does not distort the

ordinal relations). For compositions p 6= q it is calculated as the maximum value of a function on the set of b
taking values from a range from 1 to 160 with a step of 0.1. The ratio c1

c2
takes values between 0.01 and 0.99

with a step of 0.01.

Result 2. If the contest designer benefits from the total effort exerted by the
contestants, it is optimal to appoint the jury composed of two unbiased experts
and one favoring a less talented contestant. Moreover,

u1(p = 0, q = 1) ≥ u1(p = q = 1) ≥ u1(p = 1, q = 0) ≥ u1(p = q = 0).

If the degree of heterogeneity between the contestants is sufficiently large, the
non-strict inequalities become strict; if the degree of heterogeneity is suffi-
ciently small, the designer becomes indifferent to the composition of the jury.

The large degree of heterogeneity between the contestants implies that the
designer has to level the playing field, if she maximizes the total effort, by
delegating the bias provision to the jury of biased experts. The less is the role
of the jury member favoring a more talented contestant, the greater is the
total effort. However, the presence of a biased jury member, whoever of the
contestants is her favorite, is strictly better than a jury of all unbiased ex-
perts. If the degree of heterogeneity is sufficiently small, the designer has no
incentive to allow the bias provision.
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3.2 The designer maximizes the probability of a more

talented contestant winning

Next, we study how the optimal bias needs to look like if the designer max-
imizes the probability that a more talented contestant wins. Similar to the
previous case, we assume the equilibria in the voting game are equiprobable.

Proposition 4. Consider the designer seeking to maximize the probability
of contestant 1 winning. She blocks the bias provision whenever q = 1. For
p = 1, q = 0, and c1

c2
< 1√

2
, the designer delegates the bias provision to the

jury, and the optimal bias is:

b∗ =

−c1
c2

+
√

2

[(
c1
c2

)2

− 1

]
2
(
c1
c2

)2

− 1
> 1.

For p = 1, q = 0, and c1
c2
≥ 1√

2
, no solution exists, i.e., b∗ →∞.

Proof. See Appendix.

Presence of a jury member favoring a less talented contestant makes the bias
provision suboptimal. Still the degree of heterogeneity affects the optimal
bias size. If the degree of heterogeneity is sufficiently large, the rational de-
signer sets b∗ > 1, and any b > b∗ decreases the probability of contestant 1
winning. Meanwhile, if the contestants are sufficiently close in terms of their
marginal costs, the rational designer strives to set as high b as possible.

Our final result is the optimal jury composition if b is fixed at its optimal
level b∗ and the designer maximizes the probability of a more talented contes-
tant winning. Figure 4 represents numerical simulations for this specification
of the designer’s utility.

Result 3. If the contest designer strives to maximize the probability of a more
talented contestant winning, it is optimal to appoint the jury composed of two
unbiased experts and one favoring a more talented contestant. Moreover,

u2(p = 1, q = 0) ≥ u2(p = q = 1) = u2(p = 1, q = 0) = u2(p = q = 0).

If the degree of heterogeneity is sufficiently small, the non-strict inequality
becomes strict; if the degree of heterogeneity is sufficiently large, the designer
becomes indifferent to the composition of the jury.

So, the degree of heterogeneity has an opposite effect if the designer maxi-
mizes the probability of contestant 1 winning. The sufficiently small degree
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Figure 4: Maximum Probability of Contestant 1 Winning for Different Jury
Compositions and the Degree of Heterogeneity
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Note: this figure shows order of the designer’s maximum utility for feasible compositions of the jury. The
ratio c1

c2
takes values between 0.01 and 0.99 with a step of 0.01.

implies the optimal appointment of a jury with a single biased expert who
favors a more talented contestant. Any other composition of the jury is sub-
optimal. We can expect any jury composition if the degree of heterogeneity is
sufficiently large.

4 Conclusion

This paper aimed at determining optimal composition of a jury, appointed by
the contest designer, in presence of biases towards contestants the jury mem-
bers may hold. We found that, if degree of heterogeneity between the con-
testants is sufficiently large, the rational designer, striving to maximize the
total effort, appoints a jury with an expert biased towards a less talented con-
testant to encourage the contestants by creating level playing field. However,
if the degree of heterogeneity is sufficiently small, the designer is indifferent.
The opposite effect was revealed if the designer maximizes the probability of
a more talented contestant winning. Sufficiently small degree of heterogene-
ity implies that it is optimal to allow a jury with an expert biased towards
a more talented contestant to affect the contest outcome. Meanwhile, suffi-
ciently large degree of heterogeneity makes the designer indifferent.

Further research may be carried out by implementing several refinements of
Nash equilibrium in the voting game. For now, we restricted our focus on the
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pure strategies of the jury members, and we expect to obtain a more stable
and therefore more plausible equilibrium outcome by considering the mixed
strategies. The theoretical results of the study may be tested on data from
dancesport competitions. Then they can serve as a reference point to analyze
contests with biased jury members from optimal design perspective.
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Li, S. et al. (2013). Tullock contests under committee administration. Eco-
nomics Bulletin, 33 (3), 1983–1990.

Lockard, A. A. (2006). Note on rent-seeking and committees using a proportionate-
sharing rule. Public Choice, 129 (3-4), 315–319.

Siegel, R. (2014). Asymmetric contests with head starts and nonmonotonic
costs. American Economic Journal: Microeconomics, 6 (3), 59–105.

Visser, B., & Swank, O. H. (2007). On committees of experts. The Quarterly
Journal of Economics, 122 (1), 337–372.

Yildirim, H. et al. (2018). Biased experts, majority rule, and the optimal com-
position of committee (Working Paper No. 268). Economic Research
Initiatives at Duke (ERID).

16



Appendix

Proof of Proposition 1. First, consider the case e2
1 + e2

2 6= 0.

Expected payoffs of the contestants are given by:

π1 = θ1
be1

be1 + e2
+ θ2

e1

e1 + be2
+ (1− θ1 − θ2)

e1

e1 + e2
− c1e1,

π2 = θ1
e2

be1 + e2
+ θ2

be2

e1 + be2
+ (1− θ1 − θ2)

e2

e1 + e2
− c2e2.

Contestant i maximizes the expected payoff by choosing ei > 0. Taking
derivative w.r.t. ei for each i ∈ {1, 2} gives us the following system of FOCs:

∂π1

∂e1
= θ1

be2

(be1 + e2)2
+ θ2

be2

(e1 + be2)2
+ (1− θ1 − θ2)

e2

(e1 + e2)2
− c1 = 0⇔

⇔ e2

(
θ1b

(be1 + e2)2
+

θ2b

(e1 + be2)2
+

1− θ1 − θ2

(e1 + e2)2

)
= c1

∂π2

∂e2
= θ1

be1

(be1 + e2)2
+ θ2

be1

(e1 + be2)2
+ (1− θ1 − θ2)

e1

(e1 + e2)2
− c2 = 0⇔

⇔ e1

(
θ1b

(be1 + e2)2
+

θ2b

(e1 + be2)2
+

1− θ1 − θ2

(e1 + e2)2

)
= c2

So, in the equilibrium, e∗2 = c1
c2
e∗1. First solve w.r.t. e∗1, then substitute into the

equality:

e∗1 =
1

c1
· c1

c2

[
θ1b

(b+ c1
c2

)2
+

θ2b

(1 + bc1c2 )
2

+
1− θ1 − θ2

(1 + c1
c2

)2

]
,

e∗2 =
1

c2
· c1

c2

[
θ1b

(b+ c1
c2

)2
+

θ2b

(1 + bc1c2 )
2

+
1− θ1 − θ2

(1 + c1
c2

)2

]
.

The equilibrium expected payoffs are:

π∗1 = θ1
b2(

b+ c1
c2

)2 + θ2
1(

1 + bc1c2

)2 + (1− θ1 − θ2)
1(

1 + c1
c2

)2 > 0,

π∗2 = θ1

(
c1
c2

)2

(
b+ c1

c2

)2 + θ2

(
bc1c2

)2

(
1 + bc1c2

)2 + (1− θ1 − θ2)

(
c1
c2

)2

(
1 + c1

c2

)2 > 0.
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Now, we show that the pair e∗1 > 0 and e∗2 > 0 is indeed a unique Nash equi-
librium. If contestant i exerts ei > 0 and contestant −i exerts zero effort,
the payoffs are 1 − ciei and 0 respectively. If e1 = e2 = 0, the payoffs are
1
2 ,

1
2 . It is easy to see that ei = 0 is a strictly dominated strategy for each

i ∈ {1, 2}.

Proof of Proposition 2. In the sequential voting game between the jury
members, such that

(i) p = q = 1, a set of Nash equilibrium votes for the bias provision is a
union of the following sets:

– {σ ∈ Σ | ∀j ∈ J σ1j = Y, σ21 = σ23 = 1},
– {σ ∈ Σ | ∀j ∈ J σ1j = Y, σ22 = σ23 = 2},
– {σ ∈ Σ | σ12 = σ13 = N, σ21 = σ23 = 1} ∪ {σ ∈ Σ | σ11 = σ13 =
N, σ22 = σ23 = 2};

(ii) p = 1, q = 0, a set of Nash equilibrium votes for the bias provision is a
union of the following sets:

– {σ ∈ Σ | ∀j ∈ J σ1j = Y, σ2 ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}},
– {σ ∈ Σ | ∀j ∈ J σ1j = Y, σ22 = σ23 = 2},
– {σ ∈ Σ | σ12 = σ13 = N, σ2 ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)} ∪
{σ ∈ Σ | σ1 ∈ {(Y,N,N), (N,N,N), (N, Y,N), (N,N, Y )}, σ22 =
σ23 = 2}};

(iii) p = 0, q = 1, a set of Nash equilibrium votes for the bias provision is a
union of the following sets:

– {σ ∈ Σ | ∀j ∈ J σ1j = Y, σ21 = σ23 = 1},
– {σ ∈ Σ | ∀j ∈ J σ1j = Y, σ2 ∈ {(2, 2, 2), (2, 2, 1), (1, 2, 2), (2, 1, 2)}},
– {σ ∈ Σ | σ11 = σ13 = N, σ2 ∈ {(2, 2, 2), (2, 2, 1), (1, 2, 2), (2, 1, 2)} ∪
{σ ∈ Σ | σ1 ∈ {(Y,N,N), (N,N,N), (N, Y,N), (N,N, Y )}, σ21 =
σ23 = 1}};

(iv) p = q = 0, a set of Nash equilibrium votes for the bias provision is

{σ ∈ Σ | σ1 ∈ {(N,N,N), (Y,N,N), (N, Y,N), (N,N, Y )}}.

Start with the jury p = q = 1. The biased contest happens if majority of
the jury members voted to give the bias. If that happens, consider the equi-
librium votes in the voting game ’Who is the bias recipient?’. Contestant 1
receives the bias if the jury members’ votes are either of this four 111, 112,
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121, 211. Contestant 2 receives the bias if the jury members votes are either
of this four 222, 122, 212, 221.

In the biased contest the third jury member is indifferent, since all her payoffs
are equal to 0. The equilibrium votes are 111, 121, 222, 122 (in other cases,
one of the first two jury members has an incentive to deviate).

Now consider the voting game ’Is the bias provided?’. The biased contest
happens if the votes are either of this four YYY, YYN, YNY, NYY. The un-
biased contest occurs if the votes are either of this four NNN, YNN, NYN,
NNY. The equilibrium votes are YYY, YNN, NNN for 111 or 121. The equi-
librium votes are YYY, NYN, NNN for 222 or 122.

Now, we check if the obtained equilibrium profiles of votes induce fully consis-
tent beliefs θ∗1, θ

∗
2.

• (Y 1, Y 1, Y 1, e∗1, e
∗
2), θ1 = 1, θ2 = 0

Introduce ε → 0, δ → 0 as trembling probabilities. Completely mixed
strategies for each jury member, considering their hands tremble with
the same probability, are given by:

σε1j = (1− ε)Y es+ εNo

σδ2j = (1− δ)1 + δ2

The consistent beliefs according to the Bayes’ rule are defined as:

θε,δ1 = (1−ε)3(1−δ)3+3ε(1−ε)2(1−δ)3+3(1−ε)3δ(1−δ)2+9ε(1−ε)2δ(1−δ)2

θε,δ2 = (1− ε)3δ3 + 3(1− ε)3δ2(1− δ) + 3ε(1− ε)2δ3 + 9ε(1− ε)2δ2(1− δ)

Take εn = δn = 1
n → 0, then θε,δ1 → 1, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (Y 1, Y 2, Y 1, e∗1, e
∗
2), θ1 = 1, θ2 = 0

σε1j = (1− ε)Y es+ εNo

σδ21 = σδ23 = (1− δ)1 + δ2

σδ22 = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [(1− ε)3 + 3ε(1− ε)2][(1− δ)2δ + 2δ2(1− δ) + (1− δ)3]
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θε,δ2 = [(1− ε)3 + 3ε(1− ε)2][δ2(1− δ) + 2(1− δ)2δ + δ3]

Take εn = δn = 1
n → 0, then θε,δ1 → 1, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (Y 2, Y 2, Y 2, e∗1, e
∗
2), θ1 = 0, θ2 = 1

σε1j = (1− ε)Y es+ εNo

σδ2j = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [(1− ε)3 + 3ε(1− ε)2][δ3 + 3δ2(1− δ)]

θε,δ2 = [(1− ε)3 + 3ε(1− ε)2][(1− δ)3 + 3(1− δ)2δ]

Take εn = δn = 1
n → 0, then θε,δ1 → 0, θε,δ2 → 1. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (Y 1, Y 2, Y 2, e∗1, e
∗
2), θ1 = 0, θ2 = 1

σε1j = (1− ε)Y es+ εNo

σδ21 = (1− δ)1 + δ2

σδ22 = σδ23 = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [(1− ε)3 + 3ε(1− ε)2][(1− δ)δ2 + 2(1− δ)δ2 + δ3]

θε,δ2 = [(1− ε)3 + 3ε(1− ε)2][δ2(1− δ) + 2δ2(1− δ) + (1− δ)3]

Take εn = δn = 1
n → 0, then θε,δ1 → 0, θε,δ2 → 1. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (Y 1, N1, N1, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε11 = (1− ε)Y es+ εNo

σε12 = σε13 = εY es+ (1− ε)No
σδ2j = (1− δ)1 + δ2
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The consistent beliefs are:

θε,δ1 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][(1− δ)3 + 3δ(1− δ)2]

θε,δ2 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][δ3 + 3δ2(1− δ)] =

= εδ2[(1− ε)ε+ 2(1− ε)2 + ε2][δ + 3(1− δ)]

Take εn = δn = 1
n → 0, then θε,δ1 → 0, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (Y 1, N2, N1, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε11 = (1− ε)Y es+ εNo

σε12 = σε13 = εY es+ (1− ε)No
σδ21 = σδ23 = (1− δ)1 + δ2

σδ22 = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][(1− δ)2δ + 2δ2(1− δ) + (1− δ)3]

θε,δ2 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][δ2(1− δ) + 2(1− δ)2δ + δ3]

Take εn = δn = 1
n → 0, then θε,δ1 → 0, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (N2, Y 2, N2, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε11 = σε13 = εY es+ (1− ε)No
σε12 = (1− ε)Y es+ εNo

σδ2j = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][δ3 + 3(1− δ)δ2]

θε,δ2 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][(1− δ)3 + 3(1− δ)2δ]

Take εn = δn = 1
n → 0, then θε,δ1 → 0, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.
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• (N1, Y 2, N2, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε11 = σε13 = εY es+ (1− ε)No
σε12 = (1− ε)Y es+ εNo

σδ21 = (1− δ)1 + δ2

σδ22 = σδ23 = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][(1− δ)δ2 + 2(1− δ)δ + δ3]

θε,δ2 = [(1− ε)ε2 + 2(1− ε)2ε+ ε3][(1− δ)2δ + 2(1− δ)δ2 + (1− δ)3]

Take εn = δn = 1
n → 0, then θε,δ1 → 0, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (N1, N1, N1, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε1j = εY es+ (1− ε)No

σδ2j = (1− δ)1 + δ2

The consistent beliefs are:

θε,δ1 = [ε3 + 3ε2(1− ε)][(1− δ)3 + 3(1− δ)2δ]

θε,δ2 = [ε3 + 3ε2(1− ε)][δ3 + 3δ2(1− δ)]

Take εn = δn = 1
n → 0, then θε,δ1 → 1, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (N1, N2, N1, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε1j = εY es+ (1− ε)No

σδ21 = σδ23 = (1− δ)1 + δ2

σδ22 = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [ε3 + 3ε2(1− ε)][(1− δ)2δ + 2(1− δ)δ2 + (1− δ)3]
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θε,δ2 = [ε3 + 3ε2(1− ε)][δ2(1− δ) + 2(1− δ)2δ + δ3]

Take εn = δn = 1
n → 0, then θε,δ1 → 1, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (N2, N2, N2, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε1j = εY es+ (1− ε)No

σδ2j = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [ε3 + 3ε2(1− ε)][δ3 + 3(1− δ)δ2]

θε,δ2 = [ε3 + 3ε2(1− ε)][(1− δ)3 + 3δ(1− δ)2]

Take εn = δn = 1
n → 0, then θε,δ1 → 1, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

• (N1, N2, N2, e∗1, e
∗
2), θ1 = 0, θ2 = 0

σε1j = εY es+ (1− ε)No

σδ21 = (1− δ)1 + δ2

σδ22 = σδ23 = δ1 + (1− δ)2

The consistent beliefs are:

θε,δ1 = [ε3 + 3ε2(1− ε)][(1− δ)δ2 + 2(1− δ)2δ + δ3]

θε,δ2 = [ε3 + 3ε2(1− ε)][(1− δ)2δ + 2δ2(1− δ) + (1− δ)3]

Take εn = δn = 1
n → 0, then θε,δ1 → 1, θε,δ2 → 0. The limits coincide with

the considered belief system, so the obtained is a sequential equilibrium,
i.e., not only a weak sequential equilibrium.

So, all the obtained equilibria are sequential equilibria.

Now, we consider the case p = q = 0. All jury members are unbiased, so they
all are indifferent if any of the contestants receives the bias. Any combination
XXX, X from {1, 2} is Nash equilibrium (NE).
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The NE votes in the voting game ’Is the bias provided?’ are (σ11, σ12, σ13):
NNN, YNN, NYN, NNY.

The consistent beliefs are θ1 = θ2 = 0.

Now, we consider the case p = 1, q = 0. The first jury member is biased
towards contestant 1, the remaining jury members are unbiased.

In the voting game ’Who is the bias recipient?’, the NE votes are 111, 121,
112, 211 (so, contestant 1 receives it), 122, 222 (so, contestant 2 receives it).

When they cast votes that someone receives the bias, the NE votes are YYY,
YNN, NNN, if further contestant 1 is provided with the bias; YYY, NNY,
NYN, YNN, NNN, if further contestant 2 is provided with the bias.

Now, we consider the case p = 0, q = 1. The second jury member is biased
towards contestant 2, the remaining jury members are unbiased.

In the voting game ’Who is the bias recipient?’, the NE votes are 111, 121
(so, contestant 1 receives it), 221, 212, 122, 222 (so, contestant 2 receives it).

When they cast votes that someone receives the bias, the NE votes are YYY,
NNY, NYN, YNN, NNN, if further contestant 1 is provided with the bias;
YYY, NYN, NNN, if further contestant 2 is provided with the bias.

Full consistency of the induced systems of beliefs supporting the derived weak
sequential equilibria can be checked in the same manner as for the case p =
q = 1.

Proof of Proposition 3. If p = q = 1, there are two equilibria in the voting
game, which entail the bias provision. The total effort maximization problem
of the designer is equivalent to the following problem

max
b≥1

g(b) =
b(

b+ c1
c2

)2 +
b(

1 + bc1c2

)2 .

Firstly, we solve for local extremum points. Then we check if an obtained lo-
cal maximum point is a global maximum one on the feasible set b ≥ 1.

The first order condition is given by

g′(b) =

c1
c2
− b(

b+ c1
c2

)3 +
1− bc1c2(
1 + bc1c2

)3 = 0.

Define a1 = c1
c2

[
1 + (c1c2 )

2
]
∈ (0, 2), a2 = (c1c2 )

4 − 6(c1c2 )
2 + 1 ∈ (−4, 1). Solving

the FOC is equivalent to finding the roots of the following equation

−a1b
4 + a2b

3 − a2b+ a1 = 0 ⇔ (b2 − 1)

(
b2 − a2

a1
b+ 1

)
= 0
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(
a2

a1

)2

− 4 = 0⇒ b2 − a2

a1
b+ 1 = 0⇔ b = ±1

(
a2

a1

)2

− 4 > 0⇔ c1

c2
< 2−

√
3⇒ b =

a2
a1

+

√(
a2
a1

)2

− 4

2
> 1

is a root of interest (another root is less than 1).

The second order condition is given by

g′′(b) =
2
(
b− 2c1c2

)
(
b+ c1

c2

)4 +
2c1c2

(
bc1c2 − 2

)
(

1 + bc1c2

)4 which is

{
< 0 b = 1, c1

c2
> 2−

√
3;

> 0 b = 1, c1
c2
< 2−

√
3.

Due to the well-known behavior of a polynomial of degree 4 that takes the
value 0 in four different real numbers, the obtained extremum point greater
than 1, for the case c1

c2
< 2 −

√
3, is the only global maximum point on the

feasible set b ≥ 1. So the rational designer sets the bias size at the level of

b∗ =

(
c1
c2

)4
−6
(

c1
c2

)2
+1

c1
c2

[
1+
(

c1
c2

)2] +

√√√√√
(

c1
c2

)4
−6
(

c1
c2

)2
+1

c1
c2

[
1+
(

c1
c2

)2]
2

− 4

2
> 1.

If c1
c2
≥ 2 −

√
3, ∀ b > 1 g′(b) < 0, and so it is optimal to block the bias

provision.

Proof of Proposition 4. If p = q = 1, there are two equilibria in the voting
game, which entail the bias provision. The probability of a more talented con-
testant’s winning maximization problem of the designer is equivalent to the
following problem

max
b≥1

g(b) =
b

b+ c1
c2

+
1

1 + bc1c2
.

Firstly, we solve for local extremum points. Then we check if an obtained lo-
cal maximum point is a global maximum one on the feasible set b ≥ 1.

The first order condition is given by

g′(b) =
c1

c2

 1(
b+ c1

c2

)2 −
1(

1 + bc1c2

)2

 = 0⇔

[(
c1

c2

)2

− 1

]
b2 =

(
c1

c2

)2

−1⇔ b = ±1

g′′(1) =
2c1

(
c1
c2
− 1
)

c2

(
1 + c1

c2

)3 < 0.

25



The second order condition implies b = 1 is a local maximum point on R and
g′(b) < 0 for b > 1 guarantees it is the global maximum point on the set
b ≥ 1.

If p = 1, q = 0, the probability a more talented contestant receives the bias is
twice greater than that a less talented one receives it, so the designer equiva-
lently maximizes the following problem

max
b≥1

g(b) = 2
b

b+ c1
c2

+
1

1 + bc1c2
.

The first order condition is given by

g′(b) =
c1

c2

 2(
b+ c1

c2

)2 −
1(

1 + bc1c2

)2

 = 0⇔

[
2

(
c1

c2

)2

− 1

]
b2+2

c1

c2
b+2−

(
c1

c2

)2

= 0

c1

c2
<

1√
2
⇒ b =

−c1
c2

+
√

2

[(
c1
c2

)2

− 1

]
2
(
c1
c2

)2

− 1
> 1

is a root of interest (another root is less than 1). Blocking the bias provision
is not optimal as g′(1) > 0, the well-known behavior of a polynomial of degree
2 with two different real roots guarantees the obtained extremum point is the
global maximum on the set b ≥ 1. If

c1

c2
≥ 1√

2
⇒ ∀ b ≥ 1 g′(b) > 0,

which implies there is no a finite solution, and the designer strives to set as
high bias as possible.

There is no upper bound on b:

lim
b→∞

π1(b) = lim
b→∞

θ1
b

b+ c1
c2

+ θ2
1

1 + bc1c2
+ (1− θ1 − θ2)

1

1 + c1
c2

−

− c1

c2

[
θ1b

(b+ c1
c2

)2
+

θ2b

(1 + bc1c2 )
2

+
1− θ1 − θ2

(1 + c1
c2

)2

]
= θ1 +

1− θ1 − θ2

(1 + c1
c2

)2
≥ 0,

lim
b→∞

π2(b) = lim
b→∞

θ1
1

bc2c1 + 1
+ θ2

b
c2
c1

+ b
+ (1− θ1 − θ2)

1

1 + c2
c1

−

− c1

c2

[
θ1b

(b+ c1
c2

)2
+

θ2b

(1 + bc1c2 )
2

+
1− θ1 − θ2

(1 + c1
c2

)2

]
= θ2 +

(1− θ1 − θ2)c1

(c1 + c2)(1 + c2
c1

)
≥ 0.
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If p = 0, q = 1, the probability a less talented contestant receives the bias is
twice greater than that a more talented one receives it, so the designer equiv-
alently maximizes the following problem

max
b≥1

g(b) =
b

b+ c1
c2

+
2

1 + bc1c2
.

The first order condition is given by

g′(b) =
c1

c2

 1(
b+ c1

c2

)2 −
2(

1 + bc1c2

)2

 = 0⇔

[(
c1

c2

)2

− 2

]
b2−2

c1

c2
b+1−2

(
c1

c2

)2

= 0.

This quadratic equation has two roots both less than 1. Since ∀ b ≥ 1 g′(b) <
0, it is optimal to block the bias provision.

If p = q = 0, the designer is indifferent as the jury never provides the bias.
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