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1. Introduction

Many sports competitions consist of a series of races during a season. At the end of each
race the athletes are ranked in the order they finished, and assigned a number of points
based on their position in that order. The scores the athletes received are summed across
the races, and the one with the highest total score is declared the winner – a procedure that
is known as a scoring rule.

Scoring rules are ubiquitous in sporting events, contests to evince merit, elections in pro-
fessional societies, and occasionally at the national level (Nauru, Kiribati). Besides being
intuitive and easy to use, they have desirable axiomatic features which, as we shall argue,
make them uniquely suitable for this purpose.

However, in order to use a scoring rule, one must first choose a vector of scores; and the
choice is anything but simple. The International Biathlon Union (IBU) World Cup uses the
scoring vector in Table 1, containing 40 non-zero scores. Scaling the scores or changing the
zero point will not change the order produced by the scoring rule, which means the organiser
has 39 degrees of freedom in selecting a vector like this one. The prospect of picking an
optimal vector with respect to whatever criteria is daunting, but the choice is important –
the vector may play as great a role in determining the winner as the performance of the
athletes themselves.

In this paper we propose two ways to reduce the problem to the choice of a single pa-
rameter. In Sections 3 and 4 we take an axiomatic approach, motivated by reducing the
risk of the final ranking changing by the addition or removal of spoilers. This leads to the
geometric family of scoring rules governed by parameter p, where the jth position is worth
p times as much as the (j + 1)th position. In Sections 5 and 6 we introduce optimal scoring
rules, which maximise the expected quality of the winning athlete based on empirical data.
The two approaches, in general, yield different families of rules, but optimal scores converge
to the geometric in the case of a uniform distribution of athlete performance. Interestingly,
we find that the scores actually used in biathlon, golf, and athletics closely resemble the
optimal scoring rules.

2. A ranking paradox

The Women’s Pursuit category of the 2014/2015 IBU Biathlon World Cup consisted of
seven races (Table 1). Kaisa Mäkäräinen came first with two first place finishes, two second, a
third, a fourth, and a twelfth, for a total score of 348 points. Second was Darya Domracheva,
with four first place finishes, one fourth, a seventh, and a thirteenth, for a total score of 347.
In tenth place was Ekaterina Glazyrina, well out of the running with 190 points.

Four years later, Glazyrina was disqualified for doping violations, and all her results from
2013 onwards were annulled. This bumped Domracheva’s thirteenth place finish in race two
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Table 1. 2014/15 Biathlon – Women’s Pursuit: scoring system and event results

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 40
Points 60 54 48 43 40 38 36 34 32 31 30 29 28 · · · 1

Athlete Event number: points Total
1 2 3 4 5 6 7 score

Mäkäräinen 60 60 54 48 54 29 43 348
Domracheva 43 28 60 60 60 36 60 347
· · ·
Glazyrina 32 54 10 26 38 20 10 190

into a twelfth, and her total score to 348. The number of first place finishes is used as a tie
breaker, and in March 2019 the official results implied that Mäkäräinen will be stripped of
the trophy in favour of Domracheva. Because the tenth place competitor was disqualified
for doping four years after the fact.1

Clearly there is something unsatisfying about this. We would hope that the relative
ranking of Mäkäräinen and Domracheva depends solely on the relative performance of the
two athletes, and not on whether or not a third party was convicted of doping, especially if
said third party was not a serious contender for the title.

Classical results from social choice theory mean this goal is impossible: the ranking of
athletes will never be fully independent of the addition or deletion of third parties. However,
the degree of this vulnerability depends on the vector of scores used to rank the athletes.
We shall see that by introducing two extremely weak independence axioms, we narrow the
range of scoring rules to a one-parameter family – the geometric scoring rules. If the event
organiser finds these axioms convincing, then this reduces the problem of choosing a scoring
rule to the choice of a single parameter.

The science of impossibility. Suppose we have a set of m athletes and a profile of n
races, R1, . . . , Rn, with Ri being the order in which the athletes finished race i. What we
are after is a procedure which will map the n rankings into a single ranking for the entire
competition, R: a mapping (R1, . . . , Rn) 7→ R. The result of this ranking procedure must
reflect the results of the individual races in some way. A minimal condition is unanimity
– if an athlete finishes first in every race, we should expect this athlete to rank first in R.
Motivated by the scenario above, we also want the relative ranking of athletes a and b in
the end result to depend only on the relative ranking of a and b in the individual races, a
condition known as the independence of irrelevant alternatives. Here we hit the most
famous result in social choice theory – Arrow’s result that the only ordinal procedure that
meets our criteria is dictatorship (Arrow, 1950; Campbell and Kelly, 2002, p. 52).2
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The characteristic feature of dictatorship is that all decisions stem from a single individual.
In the case of a sporting competition, this could be the case where the first n− 1 races are
treated as warm-ups or friendly races, and only the finals Rn contributes to the final ranking
R. This is not necessarily an absurd ranking system, but it will not do if we want to keep
viewers interested over the course of the championship, rather than just the finals. We need
to relax independence.3

A weaker independence condition we may consider is independence of winners/losers.4

As the name suggests, this is the condition that if we disqualify the top or the bottom athlete
in the final ranking R, the remainder of the ranking remains unchanged. This could be a
pressing issue if the winner is accused of doping, and a procedure that satisfies this condition
will guarantee that the cup is given to the runner up without requiring a retallying of the
total scores. In the case of the loser, there is the additional concern that it is a lot easier
to add a loser to a race than a winner, and if the authors were to take their skis off the
shelf and lose ingloriously in the next Biathlon, one would hope that the standing of the real
competitors would remain unaffected.

It turns out that, given some standard assumptions, there is a unique ordinal procedure
that is independent of winners and losers – the Kemeny procedure (Young, 1988, footnote 18).
The procedure amounts to choosing a ranking R that minimises the sum of the Kendall tau
distance from R to the individual races. This is one of its disadvantages – it is a stretch to
expect a sports enthusiast to plot race results in the space of linear orders and compute the
central point. For viewers, the results might as well come from a black box. What is worse, it
is a difficult procedure computationally (Bartholdi et al., 1989, theorem 2), so even working
out the winner may not be feasible. But perhaps most damning of all is that it violates a
property known as electoral consistency (formal definition can be found in Appendix B).
In Biathlon, every race falls into one of four categories (sprint, pursuit, individual, mass
start). At the end of the championship a winner is selected for each category, as well as an
overall winner. It would be strange if a biathlete were to win in every category but lose the
overall title – but that is a possibility under Kemeny.

In fact, the only ordinal procedure that guarantees electoral consistency is a generalised
scoring rule (Smith, 1973; Young, 1974, 1975) – every athlete is awarded a number of points
based on their position in a race, and the athletes are ranked based on total points; in the
case of ties, another scoring rule can be used to break them. It seems there is no alternative
to the rules actually used in biathlon (IBU World Cup), auto racing (Formula One World
Championship), cycling (Tour de France green jersey), golf (Professional Golfers’ Association
Tour, stylised in all capital letters as PGA TOUR by its officials), skiing (International Ski
and Snowboard Federation World Cup), athletics (International Association of Athletics
Federations Diamond League), and other events in this format – but that is not necessarily
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a bad thing. Scoring rules are easy to compute and understand, and every additional result
contributes to the overall ranking in a predictable way, all of which is very desirable for a
sporting event.

We have seen that neither of the independence notions we have defined so far can apply
here, but how bad can the situation get? The answer is, as bad as possible. A result of
Fishburn (1981, theorem 2) shows that if the scores awarded for positions are monotone and
decreasing, it is possible to construct a sequence of race results such that if one athlete is
removed, the remaining order is not only changed, but inverted. So while Mäkäräinen may
not be pleased with the current turn of events, there is a possible biathlon where after the
disqualification of Glazyrina, Mäkäräinen finished last, and Domracheva second to last. It
is interesting to speculate whether the competition authorities would have had the resolve
to carry through such a reordering if it had taken place.

3. Geometric scoring rules

In order to motivate our final notion of independence, let us first consider why the results
of the biathlon may not be as paradoxical as they appear at first glance. Note that removing
Glazyrina from the ranking in Table 1 changed the total score of Domracheva but not
of Mäkäräinen. This is because Mäkäräinen was unambiguously better than Glazyrina,
finishing ahead of her in every race, while Domracheva was beaten by Glazyrina in race 2.
As such, the athletes’ performance vis-à-vis Glazyrina served as a measuring stick, allowing
us to conclude that Mäkäräinen was just that little bit better. Once Glazyrina is removed,
however, the edge Mäkäräinen had is lost.

So suppose then that the removed athlete is symmetric in her performance with respect
to all the others. In other words, she either came last in every race, and is thus a unanimous
loser, or came first, and is a unanimous winner. Surely disqualifying such an athlete cannot
change the final outcome? Why, yes it can.

The results for the Women’s Individual category of the 2013/14 IBU Biathlon World Cup
are given in the left panel of Table 2. The category consists of two races, and Gabriela
Soukalová came first in both, and is thus a unanimous winner, followed by Darya Dom-
racheva, Anastasiya Kuzmina, Nadezhda Skardino, and Franziska Hildebrand. However, in
the hypothetical event of Soukalová being disqualified the result is different: the recalculated
total scores are in the right panel of Table 2. Domracheva takes gold and Kuzmina silver as
expected, but Hildebrand passes Skardino to take the bronze.

In contrast to the previous paradoxes, this is one we can do something about. By picking
the right set of scores we can ensure that the unanimous loser will come last, the unanimous
winner first, and dropping either will leave the remaining order unchanged.

Let us formalise our key notions.
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Table 2. 2013/14 IBU Biathlon World Cup – Women’s Individual

Athlete Event Total
1 2 score

Soukalová 60/1 60/1 120
Domracheva 38/6 54/2 92
Kuzmina 54/2 30/11 84
Skardino 36/7 36/7 72
Hildebrand 28/13 43/4 71

Athlete Event Total
1 2 score

Soukalová 60/1 60/1 120
Domracheva 40/5 60/1 100
Kuzmina 60/1 31/10 91
Hildebrand 29/12 48/3 77
Skardino 38/6 38/6 76

Notes: The left panel presents the official points/position; the right panel presents the points/position after a
hypothetical disqualification of Soukalová. The total scores given in the table are before the disqualification
of another athlete, Iourieva, that occurred a few months after the race. With the most recent total scores
we would still observe Hildebrand overtaking Skardino, but we would have to resort to tie-breaking to do it.

Definition 1. Let M be the number of potential athletes (either finite or M = ∞). For
every number m of athletes, m ≤ M , a positional scoring rule, or a scoring rule for
short, is defined by a sequence ofm real numbers sm1 , . . . , smm. For a profile, an athlete receives
a score smj for position j in an individual ranking. The sum of scores across all rankings
gives the athlete’s total score. The total scores determine the overall ranking: athletes with
higher total scores are ranked higher, athletes with equal total scores are ranked equally.

For example, plurality is the scoring rule with scores (1, 0, . . . , 0) for each m, while
antiplurality corresponds to scores (1, . . . , 1, 0), and Borda to (m− 1,m− 2, . . . , 1, 0).

Of course, it is possible that two athletes attain the same total score, and are thus tied in
the final ranking. In general, this problem is unavoidable – if two athletes perform completely
symmetrically vis-à-vis each other, no reasonable procedure can distinguish between them.
However, if things are not quite so extreme, ties can be broken via a secondary procedure
– for example, in the case of the IBU we have seen that ties are broken with the number of
first place finishes. This gives rise to the notion of a generalised scoring rule, where ties in
the initial ranking are broken with a secondary sequence of scores, any remaining ties with
a third, and so on.

Definition 2. LetM be the number of potential athletes (either finite orM =∞). For every
number m of athletes, m ≤M , a generalised scoring rule is defined by r(m) sequences of
m real numbers sm,r1 , . . . , sm,rm – one sequence for each tie-breaking round r = 1, . . . , r(m). For
a profile, in round r, an athlete a receives score sm,rj for position j in an individual ranking.
The total sum of scores gives a total score Sra of athlete a. The total scores determine the
overall ranking lexicographically: a is ranked higher than b if Sra > Srb for some round r and
Sla = Slb for all l < r. Athletes a and b are equally ranked if Sra = Srb for all rounds r ≤ r(m).

For example, for each m athletes, generalised plurality has m − 1 rounds with scores

(

r︷ ︸︸ ︷
1, . . . , 1,

m−r︷ ︸︸ ︷
0, . . . , 0) in round r. Generalised antiplurality has (

m−r︷ ︸︸ ︷
1, . . . , 1,

r︷ ︸︸ ︷
0, . . . , 0).5



7

Note that by definition a scoring rule is a generalised scoring rule with only one tie-breaking
round.

Definition 3. An athlete is a unanimous loser if the athlete is ranked last in every race.
A generalised scoring rule satisfies independence of unanimous losers if it ranks the
unanimous loser last in the overall ranking, and removing the unanimous loser from every
race leaves the overall ranking of the other athletes unchanged.

Symmetrically, an athlete is a unanimous winner if the athlete is ranked first in every
race. A generalised scoring rule satisfies independence of unanimous winners if it ranks
the unanimous winner is ranked first in the overall ranking, and removing the unanimous
winner from every race leaves the overall ranking of the other athletes unchanged.

Observe that the order produced by a scoring rule is invariant under scaling and transla-
tion, e.g. the scores 4, 3, 2, 1 produce the same order as 8, 6, 4, 2 or 5, 4, 3, 2. We will thus
say that scores s1, . . . , sm and t1, . . . , tm are affinely equivalent if there exists an α > 0

and a β such that sj = αtj + β.
The intuition behind the following result is clear: t1, . . . , tk produces the same ranking

of the first/last k athletes, if and only if it is affinely equivalent to the first/last k scores
in the original ranking system. The proof of the theorem, and all subsequent theorems,
can be found in Appendix A, and full characterisations as ordinal ranking procedures in
Appendix B.

Proposition 4. A scoring rule satisfies independence of unanimous losers if and only if
sm1 > . . . > smm, and the scores for k athletes, sk1, . . . , skk, are affinely equivalent to the first k
scores for m athletes, sm1 , . . . , smk , for all k < m ≤M .

A scoring rule satisfies independence of unanimous winners if and only if sm1 > . . . > smm
and the scores for k athletes, sk1, . . . , skk, are affinely equivalent to the last k scores for m
athletes, smm−k+1, . . . , s

m
m, for all k < m ≤M .

Now we see why the biathlon scores are vulnerable to dropping unanimous winners but
not unanimous losers – since the scores for a smaller number of athletes are obtained by
trimming the full list, every subsequence of the list of scores is indeed equivalent to itself.
However if we drop the winner, then the subsequence 60, 54, 48, . . . , is certainly not affinely
equivalent to 54, 48, 43, . . . .

What happens when we combine the two conditions? The property of affine equivalence
is clearly an equivalence relation, so if the scores for k athletes are affinely equivalent to the
first k scores for m candidates and the last k scores for m candidates, then the first and
last k scores for m candidates must be affinely equivalent to each other, and in particular
the scores sm1 , . . . , smm−1 must be affinely equivalent to sm2 , . . . , smm. Given that we need not
distinguish scores up to scaling and translation we can assume that the score for the last
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place, smm, is zero, and smm−1 = 1. The third-to-last athlete must then get a larger number of
points than 1, say smm−2 = 1 + p. Now we have a sequence 0, 1, 1 + p, and we know it must
be affinely equivalent to the sequence 1, 1+ p, smm−3. Since the only way to obtain the second
sequence from the first is to scale by p and add 1, it follows that smm−3 = 1 + p + p2 and so
on. Clearly if p = 1 this sequence is just Borda, and some algebraic manipulation gives us
a formula of smj = (pm−j − 1)/(p − 1) for the jth position in the general case. This gives
us the following family of scoring rules consisting of the geometric, arithmetic, and inverse
geometric sequences.

Definition 5. A geometric scoring rule is a generalised scoring rule that is defined with
respect to a parameter p. The score of the jth position is affinely equivalent to:

smj =


pm−j 1 < p <∞,

m− j p = 1,

1− pm−j 0 < p < 1.

We include generalised plurality (p → ∞) and generalised antiplurality (p → 0) as edge
cases.6

Theorem 6. A scoring rule satisfies independence of unanimous winners and independence
of unanimous losers if and only if it is a geometric scoring rule.

Observe that the axioms we used are extremely weak individually. If sm1 , . . . , smm is any
monotone decreasing sequence of scores whatsoever, and we obtain sm−1j by dropping smm,
we will satisfy independence of unanimous losers. Likewise, if we obtain sm−1j by dropping
sm1 , we will satisfy independence of unanimous winners. In short our only restriction is that
more points are awarded for the jth place than for the (j + 1)th place, which in the context
of a sporting event is hardly a restriction at all. If we want to satisfy both axioms, however,
we are suddenly restricted to a class with just one degree of freedom.

It is easy to see that geometric scoring rules also satisfy two stronger properties one might
label independence of unanimous winning/losing cliques. Suppose there is a clique of k
athletes that always come in the first (last) k positions, but possibly in any order; adding or
removing such a clique will not change the order of the other athletes. Such a property is
relevant in sporting events such as Formula One racing, where the top spots are consistently
taken by a small number of strong teams.

Despite their natural formulation, geometric scoring rules have received very little at-
tention to date. Recently we have discovered the characterisation of Fine and Fine (1974,
theorem 4.3), which is almost identical to our Theorem 6, but it does not appear that anyone
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Table 3. 1999 Motorcycle Grand Prix – 125cc: scoring system and event results

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Points 25 20 16 13 11 10 9 8 7 6 5 4 3 2 1

Rider Event number: points Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 score

Alzamora 20 16 16 16 10 20 13 16 20 10 13 20 1 - 16 20 227
Melandri - - - 10 20 16 8 11 25 25 25 - 25 16 20 25 226
Azuma 25 25 25 13 9 - 25 25 10 4 6 - 11 2 10 - 190

Notes: The scores for first place finishes are in bold. Observe that Azuma performed well in the first half
of the tournament and Melandri in the second, while Alzamora performed consistently in both halves, yet
never came first.

noticed this in the subsequent literature.7 In the following sections we will explore this class.
We shall see how our axioms allow new axiomatisations of well-known (generalised) scor-
ing rules, and how geometric scoring rules compare to optimal rules for a given organiser’s
objective.

4. New characterisations

p > 1: Convex rules and winning in every race. The FIM motorcycle Grand Prix is
another championship that uses a scoring system to select a winner. The 125cc category of
the 1999 season had a curious outcome: the winner was Emilio Alzamora, who accumulated
the largest amount of points, yet did not win a single race (Table 3). This does not detract
in any way from Alzamora’s achievement – he outperformed his competitors by virtue of his
consistently high performance (compare with Melandri who performed well in the second
half, and Azuma in the first), and if he did not take any unnecessary risks to clinch the first
spot then he was justified in not doing so. However, racing is a spectator sport. If a fan
attends a particular event then they want to see the athletes give their best performance on
the day, rather than play it safe for the championship.

Bernie Ecclestone, the former chief executive of the Formula One Group, was outspoken
about similar issues in Formula One racing – “It’s just not on that someone can win the world
championship without winning a race.” Instead of the scores then used, Ecclestone proposed
a medal system. The driver who finished first in a race would be given a gold medal, the
runner-up the silver, the third the bronze. The winner of the championship would be the
driver with the most gold medals; in case of a tie, silver medals would be added, then the
bronze, then fourth-place finishes, and so on.8 In other words, he proposed the generalised
plurality system with p → ∞. And indeed, for every other geometric scoring rule, it is
possible to construct a profile where the overall winner did not win a single race.
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Proposition 7. For any p <∞, there exist n,m, and a profile with n races and m athletes
where the overall winner does not come first in any race.

There is a natural dual concept to Ecclestone’s criterion: rather than asking how many
races an athlete must win to have a chance of winning the championship, we could ask
after how many victories is the championship guaranteed.9 This leads us to the majority
criterion, which requires that any athlete that won more than half the races (the ma-
jority winner) should also win the championship. The majority criterion together with
independence of unanimous winners allows us to characterise generalised plurality.

Theorem 8. Generalised plurality is the only generalised scoring rule that satisfies inde-
pendence of unanimous winners and always ranks the majority winner first.

The presence of the majority criterion in the above theorem is not surprising. We could
expect as much given the axiomatisation of plurality by Lepelley (1992, theorem 2) and
Sanver (2002, theorem 4.1). But the fact that adding independence of unanimous winners
allows us to pin down generalised plurality is interesting because generalised scoring rules are
notoriously hard to characterise (Bossert and Suzumura, 2020), but in this case two intuitive
axioms suffice.

Here we run into a conundrum. Ecclestone’s criterion is desirable in the case of a sport-
ing event for the reasons we have mentioned – the stakes are high in every race, and this
encourages the athletes to fight for the top spot rather than settling for second place. The
majority criterion, on the other hand, tells a different story. If a driver were to win the first
bn/2 + 1c races, the championship is over. The remaining races will take place before an
empty stadium.

It seems there is a trade-off between keeping the tension high in an individual race and
over the course of the entire tournament, which could explain why the organisers of Formula
One World Championship went through so many ranking systems over the years.10

p = 1: The Borda rule and top-winner reversal bias. Saari and Barney (2003) re-
count an amusing anecdote to motivate an axiom known as top-winner reversal bias. In
a departmental election the voters were asked to rank three candidates. Mathematically,
this is the same problem as ours – to aggregate n rankings into one final result. All voters
ranked the candidates from best to worst, but the chair expected the votes to be ordered
from worst to best. The “winner” was thus the candidate that ranked highest in terms of
the voters’ assessment of unsuitability, rather than suitability for the role. After the ensuing
confusion, the votes were retallied... and the winner was unchanged. The same candidate
was judged to be at once the best and worst for the role. The authors’ story ended with the



11

chair being promoted to a higher position, but in a sporting context we could expect a less
polite outcome.

The relevant axiom here is top-winner reversal bias, which states that if a candidate
a is the unique winner with voters’ preferences R1, . . . , Rn, then if we invert the preferences
of every voter then a will no longer be the unique winner. Note that the axiom asks for less
than one might expect – we are not asking that the candidate formerly judged the best is
now judged the worst, but merely that the same candidate cannot be the best in both cases.

By itself, this axiom is quite weak. If we, without loss of generality, set s1 = 1 and sm = 0,
then the only restriction is that for 1 ≤ j ≤ m/2, sm−j+1 = 1− sj (Saari and Barney, 2003,
theorem 1).11 In other words, we have bm−2

2
c degrees of freedom. However, once we add

either one of our independence axioms, we get the Borda rule uniquely.

Theorem 9. Borda is the unique scoring rule that satisfies top-winner reversal bias and one
of independence of unanimous winners or independence of unanimous losers.

Within the context of geometric scoring rules, there is an easier way to see that Borda is
the unique rule satisfying top-winner reversal bias. If gp is the geometric scoring rule with
parameter p, and p 6= 1, then by a result of Fishburn (1981, theorem 1) there exists a profile
Q such that gp(Q) is the reverse order of g1/p(Q), gp(Q) = rev(g1/p(Q)). At the same time, it
is easy to see that gp(rev(Q)) = rev(g1/p(Q)). Combining the two we get gp(Q) = gp(rev(Q)),
which violates top-winner reversal bias.

A more demanding version of reversal bias, known as duality (Gärdenfors, 1973) and
inversion (Fine and Fine, 1974), states that if we invert the individual rankings of every
voter then the aggregate ranking will be also inverted. Fine and Fine (1974, corollary to
theorem 4.3) use inversion to provide a characterisation of Borda similar to Theorem 9.12

p < 1: Concave rules and majority loser paradox. The beginning of modern social
choice theory is often dated to Borda’s memorandum to the Royal Academy (de Borda, 1781),
where he demonstrated that electing a winner by plurality could elect a majority loser –
a candidate that is ranked last by an absolute majority of the voters. Borda motivated his
rule by the fact that it was immune to this paradox.13

The extent to which such a result should be viewed as paradoxical depends on the context
in which a ranking procedure is used. In sports, this may be acceptable – a sprinter who has
three false starts and one world record is still the fastest man in the world. In a political
context, however, voting is typically justified by identifying the will of the majority with the
will of the people; it would be odd to argue that the will of the majority is to pick a candidate
that the majority likes the least. Likewise, should a group recommendation system suggest
that a group of friends watch a film that the majority detests, soon it would be just a group.



12

It turns out that the weak version of the criterion – that the majority loser is never ranked
first – is characteristic of the concave geometric rules (p ≤ 1). The strong version – that the
majority loser is always ranked last – is satisfied only by generalised antiplurality (p→ 0).

Theorem 10. Geometric scoring rules with parameter 0 < p ≤ 1 are the only scoring rules
that satisfy independence of unanimous winners and independence of unanimous losers and
never rank the majority loser first.

Theorem 11. Generalised antiplurality is the only generalised scoring rule that satisfies
independence of unanimous losers and always ranks the majority loser last.

5. Optimal scoring rules

The practical relevance of the previous sections is that if the organiser accepts that our
two axioms are desirable – and they are very natural axioms – then the problem of choosing
a scoring rule is reduced to the choice of a single parameter, p.

Unfortunately, the choice of even a single parameter is far from trivial. In the previous
section we saw how an axiomatic approach can pin down the edge cases of generalised
plurality (p → ∞), Borda (p = 1) or generalised antiplurality (p → 0).14 In applications
where the properties these axioms represent are paramount, the question is then settled: if
you are after a scoring rule that satisfies independence of unanimous losers and top-winner
reversal bias, you must use Borda. There is no other. However, in the case of sports these
extreme rules are rarely used. Whatever goals the organisers are pursuing, these are more
complicated than simply satisfying an axiom.

In the remainder of this paper, we will take an empirical approach to selecting a scoring
rule for an event. We introduce a model of the organiser’s objective, assuming the goal is
to select an athlete that maximises some measure of quality, which aggregates the athlete’s
cardinal results. By imposing four axioms we see that this aggregation function (Fλ) must be
determined solely by a parameter λ, which can be interpreted as the organiser’s preferences
for peak performance versus consistency. It turns out that among all ordinal procedures for
producing a ranking of athletes, it is precisely the scoring rules which rank the athletes in
accordance to the expected values of Fλ, and these scores can be computed from empirical
data. If the distribution of the athletes’ cardinal results is uniform, then the optimal scoring
rules are approximately geometric, but in general the two will differ. We conclude by com-
puting these optimal scores for the IBU World Cup biathlon, PGA TOUR golf, and IAAF
Diamond League athletics, and compare them to the best approximation via a geometric
scoring rule.
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The organiser’s objective and aggregation function. An organiser’s goals can be com-
plex. For a commercial enterprise the end goal is profit, whether from ad revenue or spectator
fees. To that end they would prefer that athletes take risks and keep the audience on edge,
rather play a safe and sure strategy. If a tournament lasts for a long time, the presence
of consistently strong athletes – crowd favourites – could help hold the viewers’ attention
throughout the season. In this case the organiser would want a system that encourages
athletes to perform consistently well in every race. In a youth racing league, the focus could
be that the drivers finish the race with engines and bodies intact – the goal being that the
drivers learn to finish the race, before trying to finish it in record time.15

Because of this, we want our model of the organiser’s objective to be as general as possible.
We assume that in each of the n events, an athlete’s performance in an event i can be assessed
as a cardinal quantity, xi (e.g. finishing time in a race, strokes on a golf course, score in target
shooting). The athlete’s aggregate performance is measured by a function F : Rn → R that
maps these n cardinal quantities, x = (x1, . . . , xn), into an overall measure of quality – an
aggregation function (Grabisch et al., 2009, 2011). The space of such functions is too vast
to be tractable, so we shall narrow it down by imposing four axioms on how a measure of
quality should behave.

The first axiom has to do with the measurement of the cardinal qualities xi. Suppose
an athlete competes in the javelin throw, and in the ith round throws a distance of 95
metres. There are two natural ways in which we could record this. The first is to simply
set xi = 95, the second is to compare the throw to the current world record of 98.48 and set
xi = 95− 98.48 = −3.48. It would be absurd if the two approaches would rank our athlete
differently vis-à-vis the other athletes. Thus we require the condition of independence
of the common zero, which states that whenever F (x) ≥ F (y), it is also the case that
F (x+c) ≥ F (y+c), where c = (c, . . . , c) and the notation x+c denotes (x1+c, . . . , xn+c).

The next two axioms deal with the intuition that our aggregation function is intended
to measure quality, and hence higher values of xi, the performance in an individual event,
should contribute to a higher level of F (x), the overall quality. The least we could ask
for is that if an athlete performs (strictly) better in every event, then their overall quality
should also be (strictly) higher. This is the condition of unanimity, requiring that whenever
xi ≥ yi (xi > yi) for all i, it is also the case that F (x) ≥ F (y) (F (x) > F (y)).

Next, consider the admittedly odd situation where two javelin throwers, a and b, obtain
potentially different results on the first q throws, but throw the javelin the exact same
distance as each other in throws q+1 through n. For example, let a’s results on the first three
throws be (94, 90, 89), b’s results – (93, 93, 92), and for the sake of argument let us suppose
that F assigns a higher quality to a. It is natural to assume that this decision does not change
if throws 4 through 6 are identical. As such, if the complete results are (94, 90, 89, 70 , 94 , 90 )
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for a and (93, 93, 92, 70 , 94 , 90 ) for b, we would still expect F to assign a higher quality to a.
This is the property of separability, stating that for x = (x1, . . . , xq),y = (y1, . . . , yq), and
z = (zq+1, . . . , zn), whenever F (x) ≥ F (y), it is also the case that F (xz) ≥ F (yz), where
the notation xz denotes (x1, . . . , xq, zq+1, . . . , zn).

The final condition perhaps has the most bite. We assume that the order of the results
does not matter – it should not matter whether an athlete throws 93 in round i and 92 in
round q, or vice versa; anonymity requires that F (x) = F (πx), for any permutation π.
This would have been an innocuous assumption in a political context, where it is standard to
assume that all voters are equal, but it is a real restriction in sports as it is entirely natural
for different events to be weighted differently. However, we justify this assumption since the
three categories we examine in the next section (IBU World Cup biathlon, PGA TOUR golf,
IAAF Diamond League athletics) do not distinguish between their events in scoring.

It turns out that the only continuous solution satisfying these four properties (Moulin,
1991, theorem 2.6, p. 44) is defined with respect to a parameter λ and is the following:16

Fλ(x) =
n∑
i=1

uλ(xi) =



n∑
i=1

λxi , λ > 1,

n∑
i=1

xi, λ = 1,

n∑
i=1

−λxi , 0 < λ < 1.

As an added bonus, Fλ enjoys a version of scale invariance. Since λαxi = (λα)xi , it does not
matter whether the race is measured in minutes or seconds, provided the organiser adjusts
the value of λ accordingly.

The parameter λ can be interpreted as the organiser’s preferences for peak performance
versus consistency. With λ = 1, the organiser values consistency and assesses athletes
by their average performance. As λ increases, the organiser is more willing to tolerate poor
average performance for the possibility of observing an exceptional result, culminating in the
lexmax procedure as λ→∞. As λ decreases, the organiser is increasingly concerned about
subpar performance, tending to the lexmin procedure as λ → 0. Other factors concerning
the choice of λ are discussed in Appendix D.3.

We shall thus assume that the organiser assesses the quality of the athletes via Fλ, and
wishes to choose a sequence of scores such that the athletes with the highest quality have
the highest total score.

Why scoring rules? At this point one may ask, if we have access to the cardinal values xi,
why bother with a scoring rule at all? In a political context, cardinal voting is problematic
since voters may not know their utilities exactly, and in any case would have no reason to
report them sincerely, but in sport these are non-issues – we can measure xi directly, and a
race protocol is incapable of strategic behaviour. Nevertheless, a cardinal approach has its
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problems even in sport. In a contest where athletes are operating near the limits of human
ability, the cardinal difference between first and second place could be minuscule, and a
race decided by milliseconds. On the other hand failing to complete a race, or completing it
poorly for whatever reason, would be an insurmountable penalty. Ordinal rankings also allow
the comparison of results between different races, while cardinal results would be skewed by
external factors like wind, rain, or heat. This can explain why in practice ordinal procedures
are more popular.

The advantages of a scoring rule over other ordinal procedures is, in addition to the
axiomatic properties discussed before, the fact that if we are interested in maximising a
sum of cardinal utilities (such as Fλ), then the optimal ordinal procedure is a scoring rule,
provided the utilities are drawn i.i.d. from a distribution symmetric with respect to athletes.

Theorem 12 (Apesteguia et al., 2011; Boutilier et al., 2015; Laplace, 1886, p. 277–279).
Denote by uai the cardinal quality of athlete a in race i. Denote by ui = (u1i , . . . , u

m
i ) the

vector of cardinal qualities in race i and (u
(1)
i , . . . , u

(m)
i ) its reordering in non-increasing

order. Suppose u1, . . . , un are drawn independently and identically from a distribution with
a symmetric joint cumulative distribution function (i.e., permutation of arguments does not
change the value of this c.d.f.).

Consider a scoring rule with scores equal to the expected value of the corresponding order
statistics:

sj = E[u(j)i ].

Then the winner under this scoring rule is the athlete with the highest expected overall
quality:

max
a

E

[
n∑
i=1

uai

∣∣∣∣∣R1(u1), . . . , Rn(un)

]
,

where expectation is conditional on Ri(ui) – the ordinal ranking induced by ui. If we make
the further assumption that the cardinal qualities uai are drawn independently and identically
(i.e. we further assume that the performances of athletes in a race are independent) from a
distribution with a continuous density function, it is also the case that the total score of a
is equal to a’s expected overall quality.

Substituting uai = λx
a
i for λ > 1, uai = xai for λ = 1 and uai = −λxai for 0 < λ < 1, it

follows that if the organiser wishes to choose a winner based on Fλ, they should use a scoring
rule.17 The optimal scoring rule for a given λ can be computed by evaluating E[u(j)i ] on
historical data.

Example 13. In Table 4, we demonstrate how the optimal scoring sequence for the men’s
100m sprint could be computed, assuming the only data we have available is from the 2015
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Table 4. Men’s 100m of the IAAF Diamond League 2015

Position Event: lag behind world record Optimal scores
Doha Eugene Rome New York Paris London λ = 1 λ = 100

1 -0.16 -0.30 -0.17 -0.54 -0.23 -0.29 -0.28 100 0.31 100
2 -0.38 -0.32 -0.40 -0.55 -0.28 -0.32 -0.38 73 0.19 51
3 -0.43 -0.41 -0.40 -0.57 -0.41 -0.34 -0.43 59 0.15 34
4 -0.45 -0.41 -0.48 -0.60 -0.44 -0.38 -0.46 49 0.13 26
5 -0.46 -0.44 -0.49 -0.66 -0.47 -0.40 -0.49 42 0.11 20
6 -0.49 -0.55 -0.50 -0.70 -0.50 -0.49 -0.54 27 0.09 11
7 -0.52 -0.69 -0.50 -0.82 -0.54 -0.50 -0.60 11 0.07 5
8 -0.56 -0.70 -0.56 -0.87 -0.60 -0.51 -0.63 0 0.06 0

Notes: The numbers on the left represent the difference in seconds between the world record (9.58) and the
time of the athlete that finished first through eighth. On the right we see the raw and normalised optimal
scoring sequence computed on this data for parameters λ = 1 and λ = 100.

IAAF Diamond League. If the organiser values consistent performance (λ = 1), then uai = xai ,
so by Theorem 12 the score awarded for the first position should equal the expected per-
formance of the first-ranked athlete. Evaluating this on our data, we have (−0.16− 0.30−
0.17 − 0.54 − 0.23 − 0.29)/6 = −0.28. Repeating the calculations for the remaining posi-
tions, the optimal scoring vector is (−0.28,−0.38,−0.43,−0.46,−0.49,−0.54,−0.60,−0.63).
If we desire a more visually appealing vector, recall that affinely equivalent scores pro-
duce identical rankings, so we can normalise the scores to range from 0 to 100, namely
(100, 73, 59, 49, 42, 27, 11, 0).

If the organiser values the chance of exceptional performance more than consistency, then
their measure of athlete quality is parameterised by a λ > 1. The exact value is exogenous to
our model, but as a consequence of Theorem 12, λ has a natural numerical interpretation –
how much is an extra unit of performance worth? Choosing a λ > 1 displays a willingness to
award an athlete who completes a race with x+1 units of performance λ times as many points
as the athlete that completes the race with x units. In Table 4 we measure performance in
seconds, and one second is a colossal difference in the 100m sprint. Thus choosing a λ as high
as 100 seems perfectly reasonable. With λ = 100, uai = 100x

a
i , so the score awarded for the

first position ought to be (100−0.16 +100−0.30 +100−0.17 +100−0.54 +100−0.23 +100−0.29)/6 =

0.31, and the normalised vector is (100, 51, 34, 26, 20, 11, 5, 0).

Parallels to geometric scoring rules. The reader will notice that Fλ bears a resemblance
to a geometric scoring rule – for p, λ > 1 we raise a certain parameter to the power of a
measure of performance in a given race (whether cardinal or ordinal), and sum the result
across the races.
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We arrived at similar results because we started with similar axioms. Scoring rules are
characterised by anonymity, neutrality, and electoral consistency (Smith, 1973; Young, 1974,
1975, see Appendix B). Anonymity and neutrality require that scoring rules treat races
and athletes equally; in the cardinal setting we impose anonymity directly, and neutrality is
implicit in the fact that we use the same Fλ to measure the quality of every athlete. Electoral
consistency guarantees that if an athlete is leading in the first q and the last n− q races of
the tournament taken separately, then he is also the champion overall. Separability is similar
in that it allows us to interpret Fλ(x) ≥ Fλ(y) as meaning that the first athlete is better in
the first q races (x versus y) and (weakly) better in the last n − q (z versus z), then he is
also better overall.

Crucially, independence of the common zero allows us to raise or lower the performance of
all athletes by a common c without affecting their relative ranking. It seems that padding the
profile above or below with unanimous winners/losers is in some sense the ordinal equivalent
of adding c.

Formally, we can show that in the case of a uniform distribution, optimal scores are in
fact approximately geometric.

Theorem 14. Let x1, . . . , xm be independently and uniformly distributed on [a, b], and
x(1) ≥ . . . ≥ x(m) be their reordering in non-increasing order. As m→∞, the optimal scores
sj = E

[
λx

(j)
]
for λ > 1 and sj = E

[
−λx(j)

]
for 0 < λ < 1 converge to geometric scores with

parameter p = λ
b−a
m+1 .

For λ = 1 the optimal scoring rule is exactly Borda, which has been known since Laplace
(1886, p. 277–279).

In the limit cases of λ → ∞ and λ → 0, the optimal scoring rule tends to generalised
plurality and antiplurality for a wide class of distributions.

Theorem 15. Let the number of potential athletes be fixed and finite (M < ∞), and for
every number m of athletes, m ≤M , their performances x1i , . . . , xmi in each competition i be
drawn independently and identically from a distribution on [a, b] such that density function
f and its derivative are bounded and continuous.

Suppose b is finite and f(b) > 0. Then as λ→∞, the optimal scores sj = E
[
λx

(j)
i

]
tend

towards (but are never equivalent to) plurality. If, in addition, the number of competitions
n is bounded from above and the first M − 1 derivatives of f are bounded and continuous,
then there exists a finite λ such that for each λ > λ the optimal scoring rule is equivalent to
generalised plurality.
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Suppose a is finite, and f(a) > 0. Then as λ → 0, the optimal scores sj = E
[
−λx

(j)
i

]
tend towards (but are never equivalent to) antiplurality. If, in addition, the number of
competitions n is bounded from above and the first M − 1 derivatives of f are bounded and
continuous, then there exists a finite λ such that for each 0 < λ < λ the optimal scoring rule
is equivalent to generalised antiplurality.

6. Empirical evaluation

How realistic is our assumption that the organiser assesses athlete performance by the
aggregation function Fλ? We compared the actual scores used in the IBUWorld Cup biathlon
(Figure 1), the PGA TOUR golf, and the IAAF Diamond League athletics (Figure 2). Details
about the data and calculations can be found in Appendix D.

We used the following distance measure to find the best approximations. Given a pair of
scoring sequences, s1, . . . , sm and t1, . . . , tm, we first normalise the scores so that s1 = t1 = 1

and sm = tm = 0. Then the distance is defined by:

(1) d(s, t) =

√
1

4(m− 2)

∑
j 6=z

(sj − sz − tj + tz)2.

The factor 1/(4(m − 2)) normalises the distance between plurality and antiplurality to 1.
Motivation for such a distance measure can be found in Appendix D.

Actual scores are optimal in biathlon and golf. In the sprint and individual categories
of biathlon, the scores used are very closely approximated by the optimal scores for λ = 1.
In the pursuit category λ = 1 is a passably close fit, but λ = 1.22 and 1.19 for men and
women respectively is much better. For the mass start, the scores for λ = 1 are completely
off the mark, but λ = 1.78 and 1.69 fit the actual scores well. Geometric scores do a poor job
of approximating both the optimal and actual scores, but the prize money is approximately
geometric (see Women’s Sprint in Figure 1).

In golf (Figure 2) both the actual scores and prize money are closely approximated by
λ = 1.41 (distance 0.092 and 0.073 respectively), while the closest geometric approximation
(p = 1.56, distance 0.251 and 0.236) does not come close. The good fit of optimal scores in
biathlon and golf is perplexing – the focal case of λ = 1 is not an issue, one can easily imagine
that an organiser took a look at the average finishing times when deciding the scores. But
it is at once hard to believe that an organiser decided to raise 1.41 to the average numbers
of strokes and sum the results across historical data, or that the similarity of the scores is a
matter of chance. One may be tempted to suppose that the optimal scores are sufficiently
flexible to approximate any curve with the right choice of λ, but that is not the case – if
PGA used a geometric sequence with p = 1.02, then the best approximation with an optimal



19

 

0

20

40

60

80

100

1st 11th 21st 31st 41st

Opt λ = 1.00

IBU scores (0.091)

Men, 25 events

10 km Sprint

 

0

20

40

60

80

100

1st 11th 21st 31st 41st

Opt λ = 1.00

Geo p = 1.06 (0.248)

IBU scores (0.064)

IBU money

Geo p = 1.24 (0.080)

Women, 25 events 

7.5 km Sprint

 

0

20

40

60

80

100

1st 11th 21st 31st 41st

Opt λ = 1.00

IBU scores (0.075)

Men, 16 events

20 km Individual

 

0

20

40

60

80

100

1st 11th 21st 31st 41st

Opt λ = 1.00

IBU scores (0.108)

Women, 16 events

15 km Individual

 

0

20

40

60

80

100

1st 11th 21st 31st 41st

Opt λ = 1.00

Opt λ = 1.22

IBU scores (0.082)

Men, 20 events

12.5 km Pursuit

 

0

20

40

60

80

100

1st 11th 21st 31st 41st

Opt λ = 1.00

Opt λ = 1.19

IBU scores (0.071)

Women, 20 events

10 km Pursuit

 

0

20

40

60

80

100

1st 11th 21st

Opt λ = 1.00

Opt λ = 1.78

IBU scores (0.115)

Men, 15 events

15 km Mass Start

 

0

20

40

60

80

100

1st 11th 21st

Opt λ = 1.00

Opt λ = 1.69

IBU scores (0.073)

Women, 15 events

12.5 km Mass Start

Figure 1. Scores and prize money in IBU World Cup biathlon

Notes: Scores and prize money used in 2017/18, 2018/19 and 2019/20 seasons compared with the best
approximations by geometric and optimal scores. Since there were only 7 Individual races in the three
seasons (these figures can be found in Appendix D), here we present results for 16 Individual races from
2014/15 to 2019/2020 seasons. The x-axis is the position, the y-axis the normalised score. Scores for first
position were normalised to 100, for forty-first (or twenty-ninth in the mass start) position to 0. The optimal
scores for λ = 1 (purple solid, higher curve) and λ > 1 (black solid, lower curve, performance measured
in minutes) approximate the actual IBU scores used (red long dash two dots). Observe that the best
approximations by p = 1.06 (blue dash, higher curve) and p = 1.24 (brown dash, lower curve) illustrate that
the actual IBU prize money awarded (light blue long dash dot) is close to be geometric, while the optimal
scores are not. The approximation distance is in brackets and calculated by formula (1), and denotes the
distance to the first curve without brackets above the approximation in the legend.
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Figure 2. Scores in PGA TOUR golf and IAAF Diamond League athletics

PGA: Scores and prize money used in 2017/18 and 2018/19 seasons compared with geometric and optimal
scores. The x-axis is the position, the y-axis the normalised score. Scores for first position were normalised
to 100, for seventieth position to 0. Observe that the optimal scores for λ = 1 (purple solid, higher curve)
illustrate the concave-convex nature of the performance distribution. The optimal scores for λ = 1.41 (black
solid, lower curve, performance measured in strokes) closely approximate both the actual PGA scores used
(red long dash two dots) and prize money awarded (light blue long dash dot). The best approximations
by p = 1.02 (blue dash, higher curve) and p = 1.47 (brown dash, lower curve) illustrate that the optimal
scores are far from geometric. The approximation distance is in brackets and calculated by formula (1), and
denotes the distance to the first curve without brackets above the approximation in the legend.
IAAF : The optimal scores for three athletic disciplines in 2010–2021 seasons approximated by geometric
scores. The x-axis is the position, the y-axis the normalised score. Scores for first position were normalised
to 100, for seventh (or eighth) position to 0. The eighth position is excluded to account for the discouragement
effect in running (Krumer, 2021). The effect is pronounced in our data, see Appendix D. Observe that the
actual Borda scores used since 2017 (geometric p = 1, red long dash two dots) closely approximate the
optimal scores for λ = 1 (purple solid, higher curve). The curves for λ > 1 (black solid, lower curve,
performance measured in seconds for running, metres for throw, and decimetres for jump) illustrate how
closely other geometric scores (brown dash) can approximate the optimal scores. The approximation distance
is in brackets and calculated by formula (1). Figures for all 24 analysed athletic disciplines can be found in
Appendix D.

scoring rule would be λ = 0.99, with a distance of 0.538. We discuss this phenomenon in the
conclusion.

Optimal scores explain phenomena in golf and biathlon. The resemblance of the
scores and prize money in golf to optimal scores with λ = 1.4 also shed light on empirical
phenomena in the sport. A single “race” in golf (called a tournament) consists of four rounds.
In a famous study Ehrenberg and Bognanno (1990) find that a golfer who finishes the first
three rounds trailing behind the other competitors is likely to perform poorly in the final
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round. The authors attribute this to the fact that the marginal monetary return on effort
spent for a golfer who can expect to rank low is lower than for a golfer who can expect
to rank high, which disincentivises those who are trailing from further effort. But why do
marginal returns display this behaviour? The authors argue that this is due to the convexity
of the prize structure – “the marginal prize received from finishing second instead of third
was 4.0 percent of the total tournament prize money, while the marginal prize received from
finishing twenty-second instead of twenty-third was 0.1 percent of the total tournament prize
money”.

We can now see that there is more to the story. What is key here is not the convexity
of the scores per se, but how the scores relate to the distribution of the athletes’ cardinal
performance. Intuitively, one can imagine that the convexity of the rewards is offset by the
convexity of athlete performance – while climbing from the 2nd to the 1st position will net
a larger reward than climbing from the 50th to the 49th, climbing from the 50th to the 49th
is a lot easier.

Observe that it is possible for optimal scores with parameter λ = 1 to be convex (Figure 1),
but we argue that had PGA assigned prize money according to λ = 1, we would not observe
the effect of Ehrenberg and Bognanno (1990). Suppose athlete a is performing poorly and
knows their final cardinal quality in this race, xai , will be low. The athlete must decide
whether to accept xai , or expend the extra bit of effort to finish with xai + ε. By Theorem 12,
at the end of all n races a can expect his total earnings to equal his overall quality – the sum
of xa1, . . . , xan. If the athlete’s performance in the ith race is xai + ε rather than xai , this will
translate to an expected ε extra in prize money, regardless of the value of xai . On the other
hand, with λ = 1.4, the athlete can expect to earn the sum of 1.4xa1 , . . . , 1.4xan . By putting in
the extra effort he can substitute 1.4xai +ε for 1.4xai , but the extra money here will very much
depend on the value of xai , and we could expect an athlete that is lagging to not expend the
extra effort.

Optimal scores also explain the result of Shmanske (2007) and Hood (2008), who observed
that golfers with a high variance in the number of strokes earn more than more consistent
golfers, even if the mean performance of the consistent golfers is slightly better. The authors
attribute this effect to the convexity of the prize money used, but again we claim that such
a phenomenon would be absent with λ = 1, regardless of how convex the prize money
distribution may be. As a consequence of Theorem 12, we would expect a golfer’s earnings
to be determined solely by their average performance. Variance does not enter into the
equation. This reaffirms our interpretation of the choice of λ being linked to the organiser’s
attitude towards peak performance – by using λ = 1.4 the organisers of the PGA TOUR are
willing to reward inconsistent golfers for the possibility of exceptional performance, even if
their mean performance suffers.
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In the case of biathlon, we observed that the actual scores used resemble optimal scores
with λ = 1 in the case of the sprint, and λ > 1 in mass start and pursuit (Figure 1). A recent
paper of Gürtler et al. (2022) studied risk-taking in tournaments and in their interpretation
athletes used a riskier strategy in mass start and pursuit than in sprint. This agrees with
our interpretation of λ = 1 as giving athletes an incentive to play a consistent strategy, and
λ > 1 to motivate them to aim for peak performance, even if it involves the risk of finishing
poorly.

Geometric scores are optimal in athletics. In Theorem 14 we have shown that with
a uniform distribution of athlete performance, the optimal scoring rule is approximately
geometric. We can see this phenomenon in the data of the IAAF Diamond League (Figure 2).
The actual scoring rule used since 2017 in these events is Borda, which would be the optimal
scoring rule for λ = 1 if the distribution were uniform. In the 24 athletic disciplines studied
(see Appendix D), only in 5 was the distance between Borda and λ = 1 greater than 0.1,
and the largest distance was 0.146 (women’s high jump, Figure 6 in the appendix). The
distribution of athlete performance is remarkably uniform in most events. Presumably,
this is because this is a well-understood sport where athletes perform near the limits of
human performance – the athletes are sampled from a very narrow slice of the distribution of
possible human performance, and we would expect such a slice to be approximately uniform.
To further demonstrate the convergence guaranteed by Theorem 14, we plot hypothetical
curves for scores with a higher value of λ, and the best geometric approximation, in Figure 2.
Note that even though the theorem states that the rules converge as the number of athletes
tends to infinity, the fit is very good even with m = 7, 8.

7. Conclusion

Scoring rules are omnipresent. They are used in group decisions (Dyer and Miles Jr.,
1976), group recommender systems (Masthoff, 2015), meta-search engines, multi-criteria
selection, word association queries (Dwork et al., 2001), sports competitions (Stefani, 2011;
Csató, 2021b), awarding prizes (Benoit, 1992; Stein et al., 1994; Corvalan, 2018), arbitrator
selections (Bloom and Cavanagh, 1986), and even for aggregating results from gene expression
microarray studies (Lin, 2010). Many countries use scoring rules in political elections: most
of them use plurality, while Slovenia, Nauru and Kiribati use non-plurality scores (Reilly,
2002; Fraenkel and Grofman, 2014).

It is likely that scoring rules are popular because of their simplicity, yet choosing a scoring
rule for a specific application is by no means simple. An axiomatic approach simplifies this
search by narrowing the scope to the set of rules satisfying a certain combination of proper-
ties. In this paper, we establish that:
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• Two natural independence axioms reduce the search to a single parameter family
– the choice of p determines the scores we need (Theorem 6). To our knowledge,
this is the only characterisation of a non-trivial family of scoring rules, rather than
a specific rule, in the literature.18 This family is sufficiently broad: not only does it
include a continuum of convex and concave scores, but also three of the most popular
scoring rules: the Borda count, generalised plurality (medal count) and generalised
antiplurality (threshold rule).

• We demonstrate how the choice of the parameter p is constrained by the presence of
other desirable axioms. The majority winner criterion pins down generalised plural-
ity (Theorem 8), top-winner reversal bias – Borda (Theorem 9), and majority loser
– generalised antiplurality (Theorem 11). In Appendix B, we provide a full charac-
terisation of these rules among all ordinal ranking procedures.

• Finally, we consider the choice of a scoring rule in the context of a sporting competi-
tion on historical data. We introduce a model of the organiser’s goal, and derive the
optimal scoring rules for biathlon (Figure 1), golf, and athletics (Figure 2). These
scores closely resemble the actual scores used by the organisers, and provide an expla-
nation for the phenomena observed by Ehrenberg and Bognanno (1990), Shmanske
(2007), Hood (2008), and Gürtler et al. (2022). In this framework, to choose a vector
of m− 1 values, the organiser need only decide on a parameter λ and compute order
statistics on historical data. Furthermore, we show that if athlete performance in
the sport in question is uniformly distributed, the organiser does not even need to
compute the order statistics – they can simply use a geometric scoring rule (Theo-
rem 14).

Our independence axioms have not received much attention in the literature, perhaps
because of how weak they are individually. However, the points incenter (Sitarz, 2013),
best-worst (Garćıa-Lapresta et al., 2010), and antiplurality scoring rules violate independence
of unanimous losers by Proposition 4. In Appendix C, we show that Nanson’s procedure
(Nanson, 1882; Felsenthal and Nurmi, 2018, p. 21), the proportional veto core (Moulin, 1981),
and even certain generalised scoring rules used in practice, such as average without misery
(Masthoff, 2015) and veto-rank (Bloom and Cavanagh, 1986), also violate independence
of unanimous losers.19 It would be interesting to see where else these axioms can provide
some insight. In the weighted version of approval-based multiwinner voting (Thiele, 1895;
Janson, 2018), if we apply independence of always-approved alternatives (analogous to our
independence of unanimous winners), we will obtain geometric sequences of scores which
include the top-k rule and a refinement of the Chamberlin–Courant rule as particular cases.
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Similarly, in the weighted version of approval-based single-winner voting (Alcalde-Unzu and
Vorsatz, 2009), this axiom will lead to geometric sequences of scores which include approval
voting and a refinement of plurality as particular cases. Recently, Brandl and Peters (2022,
theorem 9) characterised approval voting by independence of never-approved alternatives
(analogous to our independence of unanimous losers).

Future directions. The most striking empirical finding in this paper is the close agreement
of optimal scoring rules and the scores used in practice. The case of λ = 1 could be explained
away – it is not a stretch to imagine that an organiser decided to look at average times when
deciding on a scoring vector. It is less credible to suppose that an organiser decided to
raise λ to the power of the result, and take the sum of the outcomes, especially if λ takes
on seemingly random values like 1.22 and 1.78. To make things worse, consider that the
IBU uses only two scoring vectors for eight categories (Figure 1); the vectors are optimal in
each case, but for different values of λ (indeed, different values for men and women). We
suspect there is some empirical process going on that causes athlete’s results to converge to
the scoring vector over time. This is a possibility that should be explored.

The problem of rank aggregation arises in many contexts, but historically the field was
largely viewed through the lens of political elections. As a consequence the assumption that
we should treat candidates and voters equally – neutrality and anonymity – generally goes
unquestioned. In a sporting context both are much more demanding suppositions (Stefani,
2011; Csató, 2020, 2022). Anonymity demands that we weigh every race equally, while there
are compelling reasons why we might want to place greater weight on some events than others
– perhaps to recognise their difficulty, or to modulate viewer interest over the course of the
championship. Relaxing anonymity raises the question of how we can axiomatise weighted
counterparts of geometric scoring rules, and whether our independence axioms can provide
additional insight on non-anonymous rules. Neutrality may be perfectly natural when it
comes to ranking athletes, but the assumption of symmetric a priori performance of athletes
in Theorem 12 is a strong one. Clearly some athletes can be expected to perform better than
others (Broadie, 2012), and even the mere presence of an exceptional athlete can be enough
to change the performance of the competitors (Brown, 2011). It would be interesting to see
what the optimal ranking procedure would be in a more general setting.

Another peculiar feature of many sporting events is that both points and prize money are
awarded after each event, and the principles governing the two could be very different. We
have seen that, while in golf the scores and prize money are almost identical (Figure 2), in
biathlon the two are completely different (Figure 1). This can lead to the phenomenon where
the athlete that earns the most money is not, in fact, the champion.20 It would be interesting
to see whether such incidents could be avoided, as well as what are other desirable features
of prize structures. It does not appear that the axiomatic approach has been applied to prize
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structures, barring the recent works of Dietzenbacher and Kondratev (2022) and Petróczy
and Csató (2021).

This paper was motivated by sports, where extreme results are valued, so we had little
to say about concave geometric rules (0 < p ≤ 1). An area where they may be of interest
is group recommendation systems, where one of the guiding principles is balance between
achieving high average utility in the group, and minimising the misery of the least happy
member. It is easy to see that Borda (p = 1) maximises rank-average utility, while generalised
antiplurality (p → 0) minimises the misery of the least happy member. It is natural to
suppose that rules with 0 < p < 1 will find a middle ground between these two extremes,
and it would be interesting to compare them to other procedures for achieving balance, such
as average without misery (Masthoff, 2015), the Nash product (Dyer and Miles Jr., 1976;
Airiau et al., 2019), or veto-based approaches (Ianovski and Kondratev, 2021).

Notes

1. After the disqualification of Glazyrina, the IBU eventually decided to award the 2014/15 Pursuit Globe
to both Domracheva and Mäkäräinen (https://biathlonresults.com). While this keeps both athletes
happy, it is clearly an ad-hoc solution. In November 2021, another biathlete (Olga Zaitseva) was dis-
qualified. Mäkäräinen is again the victim, and after the score recount would have lost the 2013/14 Big
Crystal Globe to Tora Berger. Again, the IBU decided to recognise both Berger and Mäkäräinen as the
total score winners (https://web.archive.org/web/20220114020227/https://www.biathlonworld.com/
news/berger-makarainen-total-score/7JONQpUehHSZGX6ucrwn0x). Perhaps this approach will become
the new normal. We refer to Wright (2014) and Kendall and Lenten (2017), for surveys of where other
sporting rules led to unintended consequences.

2. If we want not to determine an aggregate ranking but only to select a single winner, then unanimity and
independence of irrelevant alternatives still lead to dictatorship – it follows from a more general result of
Dutta et al. (2001, theorem 1).

3. The approach in this paper is axiomatic. We want a ranking procedure that always satisfies a certain notion
of independence, and mathematical impossibilities force us to relax the notion until it is weak enough to be
compatible with other desirable properties. This is not the only way to approach the problem. For example,
we might accept that we cannot have independence all of the time, and instead look for a procedure that
will satisfy independence most of the time. Gehrlein et al. (1982, theorem 1), in that framework, show that
under the impartial culture assumption (i.e. when all rankings are equally probable), the scoring rule most
likely to select the same winner before and after a random candidate is deleted is Borda.

4. Independence of winners/losers is also known as local stability (Young, 1988) and local independence of
irrelevant alternatives. Independence of losers is also known as independence of bottom alternatives (Freeman
et al., 2014).

5. Generalised plurality is also known as lexicographic ranking or the Olympic medal count (Churilov and
Flitman, 2006); generalised antiplurality – as the threshold rule (Aleskerov et al., 2010).

https://biathlonresults.com
https://web.archive.org/web/20220114020227/https://www.biathlonworld.com/news/berger-makarainen-total-score/7JONQpUehHSZGX6ucrwn0x
https://web.archive.org/web/20220114020227/https://www.biathlonworld.com/news/berger-makarainen-total-score/7JONQpUehHSZGX6ucrwn0x
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6. Observe that for any fixed number of races n, choosing a p ≥ n will guarantee that no amount of (j + 1)th
places will compensate for the loss of a single jth place – this rule will be precisely generalised plurality.
Likewise, choosing p ≤ 1/n will give us generalised antiplurality. By including these rules in the family of
geometric scoring rules, all we are asserting is that the organiser is allowed to choose a different value of p
if the length of the tournament, n, changes.

7. The independence axioms used by Fine and Fine (1974) in their characterisation of geometric scoring rules
do not require the ranking of a unanimous winner first and a unanimous loser last, as our axioms do, but
instead their definition of scoring rules directly requires non-decreasing scores.

Phillips (2014) independently used geometric sequences to approximate Formula OneWorld Championship
scores, and Laplace suggested scoring with the sequence 2m−1, 2m−2, . . . , 1 (Daunou, 1995, p. 261–263), i.e.
a geometric scoring rule with p = 2. Laplace’s motivation was that if we suppose that a voter’s degree of
support for a candidate ranked jth can be quantified as x, then we cannot say whether the voter’s support
for the (j + 1)th candidate is x − 1, x − 2, or any other smaller value. As such, he proposed to take the
average, or x/2. The recent work of Csató (2021a), answering a question posed by an earlier version of this
paper, investigates geometric scoring rules in the context of the threat of early clinch in Formula One racing.

8. Bernie Ecclestone justified the medal system as follows:

The whole reason for this was that I was fed up with people talking about no overtaking.
The reason there’s no overtaking is nothing to do with the circuit or the people involved,
it’s to do with the drivers not needing to overtake.
If you are in the lead and I’m second, I’m not going to take a chance and risk falling off
the road or doing something silly to get two more points.
If I need to do it to win a gold medal, because the most medals win the world championship,
I’m going to do that. I will overtake you.

From: https://web.archive.org/web/20191116144110/https://www.rte.ie/sport/motorsport/2008/
1126/241550-ecclestone/

9. To win the championship for sure, an athlete must come first in more than n(sm1 − smm)/(2sm1 − sm2 − smm)

races; see Kondratev and Nesterov (2020, theorem 10) and Baharad and Nitzan (2002, theorem 1).

10. The organisers of Formula One World Championship have produced a study comparing historical results
to the hypothetical outcome had Ecclestone’s medal system been used (https://web.archive.org/web/
20100106134601/http://www.fia.com/en-GB/mediacentre/pressreleases/f1releases/2009/Pages/f1_
medals.aspx). While such comparisons should be taken with a grain of salt, since they do not take into
account the fact that athlete’s strategies would have been different under a different scoring system, it is
nevertheless interesting that they find that 14 championships would have been shorter, while 8 would have
been longer.

In a recent work, Csató (2021a) examines the trade-off between reducing the likelihood of an athlete
winning the championship without coming first in any race, and delaying the point at which the championship
is decided. The author compares the historic Formula One scoring schemes and geometric scoring rules on
a synthetic dataset, and finds that the current Formula One system is indeed on the Pareto frontier.

11. Gärdenfors (1973) introduces duality (the most demanding variant of reversal bias, also known as inversion
and reversal symmetry) and verifies it for different modifications of the Borda rule. Morkeliūnas (1977)

https://web.archive.org/web/20191116144110/https://www.rte.ie/sport/motorsport/2008/1126/241550-ecclestone/
https://web.archive.org/web/20191116144110/https://www.rte.ie/sport/motorsport/2008/1126/241550-ecclestone/
https://web.archive.org/web/20100106134601/http://www.fia.com/en-GB/mediacentre/pressreleases/f1releases/2009/Pages/f1_medals.aspx
https://web.archive.org/web/20100106134601/http://www.fia.com/en-GB/mediacentre/pressreleases/f1releases/2009/Pages/f1_medals.aspx
https://web.archive.org/web/20100106134601/http://www.fia.com/en-GB/mediacentre/pressreleases/f1releases/2009/Pages/f1_medals.aspx
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studies interrelations between variants of neutrality, independence, and duality. Fine and Fine (1974, theo-
rem 4.2) and Llamazares and Peña (2015, corollary 5) independently describe the scoring rules that satisfy
inversion and reversal symmetry. Saari and Barney (2003, theorem 1) describe the scoring rules that are
invulnerable to different variants of the reversal bias paradox but omit the formal proof.

Similar axioms are studied in the case of single-winner (as opposed to ranking) rules (Morkeliūnas, 1982;
Fishburn, 1973, p. 157). Heckelman and Ragan (2021, theorem 4) characterise the scoring rules that satisfy
duality (invertibility in their terminology). However, the set of axioms in their characterisation is not
complete. For instance, for the case of four candidates, a generalised scoring rule with the Borda vector in
the first round and (2, 1, 1, 0) vector in the second round satisfies all their axioms, but is not even a scoring
rule. Their characterisation will become correct if we add, for instance, an axiom of continuity introduced
by Young (1975).

12. In addition to using inversion instead of top-winner reversal bias to characterise the Borda rule, the in-
dependence axioms of Fine and Fine (1974) do not require the ranking of a unanimous winner first and
a unanimous loser last, as our axioms do, but instead their definition of scoring rules directly requires
non-decreasing scores.

In this paper we consider Borda, and all other scoring rules, as ranking procedures – they produce an
ordering of the athletes from best to worst. If we are only interested in the version of Borda that selects the
winner(s), then a difficult to find paper of Morkeliūnas (1982) presents a characterisation of the Borda rule
using variants of duality and independence of unanimous losers. Heckelman and Ragan (2021, theorem 5)
rediscovered the characterisation, but used a more demanding axiom than the duality of Morkeliūnas (1982)
and additionally required an axiom of positive responsiveness. Moreover, the proof of Heckelman and Ragan
(2021) relies on their theorem 4, which requires additional axioms, as we have shown in the previous note.

13. Llamazares and Peña (2015, corollary 4) and Kondratev and Nesterov (2020, theorem 10) provide equivalent
characterisations of the scoring rules that never rank the majority loser first (in their notation, immune to
the absolute loser paradox, and satisfy the majority loser criterion, respectively).

14. Theoretical frameworks where the best scoring rule was found to be different from Borda, plurality, and
antiplurality are rare indeed. Some examples include Lepelley (1995), Lepelley et al. (2000, 2018), Cervone
et al. (2005), Sitarz (2013), Kamwa (2019), Diss et al. (2021) and Kilgour et al. (2022).

15. We have previously mentioned that Bernie Ecclestone is outspoken about the need of a ranking system
that motivates racers to overtake in every race. For contrast, in the Tour de France the prize for the most
aggressive athlete – the prix de la combativité – is relatively unknown, while the most prestigious award is
the Yellow Jersey, awarded to the athlete with the best overall time.

The Castrol Toyota Racing Series positions itself as incubating the next generation of racing talent, and the
competitors tend to be very young. The 2018 season consisted of 14 drivers, and the score for the fourteenth
position was 24. The winner was Robert Shwartzman with a total score of 916. Richard Verschoor came
second with 911, but failed to complete the third race (and thus got no points). Had Verschoor finished in
any position whatsoever, he would have taken the championship.

16. Our version of the separability axiom implies Moulin’s (1991) separability; this argument is well known, see
e.g. lemma 18 in Kothiyal et al. (2014).
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17. The theorem statements of Apesteguia et al. (2011, theorem 3.1) and Boutilier et al. (2015, theorem 4.2)
assume that all values uai are non-negative, but the proofs work for any value of uai .

18. Chebotarev and Shamis (1998) provide an extensive overview of previous axiomatisations of scoring rules.
While there have been many relaxations of independence in the literature, e.g., independence of Pareto-
dominated alternatives or reduction principle by Luce and Raiffa (1957, p. 288) and Fishburn (1971, 1973,
p. 148), and independence of clones by Tideman (1987), for scoring rules they rarely led to positive results.
Richelson (1978) proved that plurality is the only scoring rule that satisfies independence of Pareto-dominated
alternatives, Ching (1996) generalised it by dropping one of the redundant axioms, and for a more general
framework Morkeliūnas (1982) proved a theorem which implies the results of Richelson and Ching as corollar-
ies. Öztürk (2020, theorems 1, 2) showed that plurality is the only scoring rule that satisfies weaker versions
of independence of clones. Borda’s rule is the only scoring rule that satisfies a modified independence defined
by Maskin (2020).

19. Recently, Barberà and Coelho (2022) showed that the shortlisting procedure (de Clippel et al., 2014) and the
voting by alternating offers and vetoes scheme (Anbarci, 1993) violate independence of unanimous losers.

20. In the PGA TOUR, the winner of the 2018 FedEx cup was Justin Rose, while the money leader was Justin
Thomas, with 8.694 million to Rose’s 8.130 (https://web.archive.org/web/20200318190006/https://
www.pgatour.com/news/2018/10/01/2018-2019-pga-tour-full-membership-fantasy-rankings-1-50.
html, https://web.archive.org/web/20180924033715/https://www.pgatour.com/daily-wrapup/2018/
09/23/tiger-woods-wins-2018-tour-championship-justin-rose-wins-fedexcup-playoffs.html).

Appendix A. Proofs

Proposition 4. A scoring rule satisfies independence of unanimous losers if and only if
sm1 > . . . > smm, and the scores for k athletes, sk1, . . . , skk, are affinely equivalent to the first k
scores for m athletes, sm1 , . . . , smk , for all k < m ≤M .

A scoring rule satisfies independence of unanimous winners if and only if sm1 > . . . > smm
and the scores for k athletes, sk1, . . . , skk, are affinely equivalent to the last k scores for m
athletes, smm−k+1, . . . , s

m
m, for all k < m ≤M .

Proof. The result follows from theorem 1 of Fishburn (1981) – that if two scoring vectors are
not affinely equivalent, then there exists a profile at which they lead to different rankings.
We provide an independent, constructive proof.

The “if” part is straightforward. Let us prove the “only if” part.
Step one: That the scores are strictly decreasing.
For a fixed k < m ≤M , consider a profile Pk consisting of just one race, a1 � . . . � ak. By

independence of unanimous losers, ak must come last, so skk < skj for all j < k. Moreover, the
ranking of a1, . . . , ak−1 must be the same as the ranking in the profile Pk−1 with the single
race a1 � . . . � ak−1. By independence of unanimous losers, ak−1 must come last in Pk−1,

https://web.archive.org/web/20200318190006/https://www.pgatour.com/news/2018/10/01/2018-2019-pga-tour-full-membership-fantasy-rankings-1-50.html
https://web.archive.org/web/20200318190006/https://www.pgatour.com/news/2018/10/01/2018-2019-pga-tour-full-membership-fantasy-rankings-1-50.html
https://web.archive.org/web/20200318190006/https://www.pgatour.com/news/2018/10/01/2018-2019-pga-tour-full-membership-fantasy-rankings-1-50.html
https://web.archive.org/web/20180924033715/https://www.pgatour.com/daily-wrapup/2018/09/23/tiger-woods-wins-2018-tour-championship-justin-rose-wins-fedexcup-playoffs.html
https://web.archive.org/web/20180924033715/https://www.pgatour.com/daily-wrapup/2018/09/23/tiger-woods-wins-2018-tour-championship-justin-rose-wins-fedexcup-playoffs.html
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so ak−1 must come second-to-last in Pk, and thus skk−1 < skj for all j < k − 1. By repeating
this argument we establish that sk1 > . . . > skk for all k ≤ m.
Step two: That the scores for k athletes are affinely equivalent to the first k scores for

m athletes.
For a fixed k < m ≤ M , consider sm1 , . . . , smk and sk1, . . . , skk. Let α = (sm1 − sm2 )/(sk1 − sk2)

and β = (sk1s
m
2 − sk2sm1 )/(sk1 − sk2). Observe that the scores αsk1 + β, . . . , αskk + β are affinely

equivalent to sk1, . . . , skk, and moreover:

αsk1 + β =
sm1 − sm2
sk1 − sk2

sk1 +
sk1s

m
2 − sk2sm1
sk1 − sk2

=
sm1 s

k
1 − sm1 sk2
sk1 − sk2

= sm1 ,

αsk2 + β =
sm1 − sm2
sk1 − sk2

sk2 +
sk1s

m
2 − sk2sm1
sk1 − sk2

=
sm2 s

k
1 − sm2 sk2
sk1 − sk2

= sm2 .

For convenience, we write tj = αskj + β for j = 3, . . . , k. It remains to show that tj = smj
for j = 3, . . . , k to prove that the scores are affinely equivalent.

Suppose for contradiction that tj > smj for some j (the case where tj < smj is analogous).
Choose integers n2 > 0 and n1 such that:

(2)
sm2 − tj
sm1 − sm2

<
n1

n2

<
sm2 − smj
sm1 − sm2

.

Let n = |n1|+ n2. Construct a profile with 3n races and m athletes as follows.
If n1 ≤ 0, then in |n1| races a has position 1 and b has position 2. In n2 races a has

position 1 and b has position j. In n races a has position 2 and b has position j. In −n1

races a has position j and b has position 2. In n + n1 races a has position j and b has
position 1.

If n1 > 0, then in n races a has position 1 and b has position j. In n2 races a has position 2

and b has position j. In n1 races a has position 2 and b has position 1. In n races a has
position j and b has position 1.

In both cases there are m − k athletes who come last in the order ak+1 � . . . � am in
every race, and the other athletes are ranked arbitrarily.

Observe than in a profile so constructed athlete a finishes n times in positions 1, 2, j.
Athlete b finishes first n+n1 times, second |n1| −n1 times, and j-th n+n2 times. The total
score of a is thus nsm1 +nsm2 +nsmj and the total score of b is (n+n1)s

m
1 +(|n1|−n1)s

m
2 +(n+

n2)s
m
j . The difference between the total scores of a and b is (n2s

m
2 −n2s

m
j )− (n1s

m
1 −n1s

m
2 ),

which is positive by formula (2). Thus, a beats b.
Now suppose we drop ak+1, . . . , am from the races. In the new race, a attains Sa =

nsk1 + nsk2 + nskj points, and b attains Sb = (n+ n1)s
k
1 + (|n1| − n1)s

k
2 + (n+ n2)s

k
j . Clearly,

Sa − Sb > 0 if and only if αSa + 3nβ − (αSb + 3nβ) > 0, so we multiply both totals by α
and add 3nβ. We obtain nsm1 + nsm2 + ntj for a, and (n+ n1)s

m
1 + (|n1| − n1)s

m
2 + (n+ n2)tj
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for b. This gives us a difference of (n2s
m
2 − n2tj)− (n1s

m
1 − n1s

m
2 ), which is negative by (2),

meaning that dropping the unanimous losers made b overtake a.
The argument for independence of unanimous winners is analogous. �

Proposition 7. For any p <∞, there exist n,m, and a profile with n races and m athletes
where the overall winner does not come first in any race.

Proof. We proceed by cases on the value of p.
Case one: p < 1.
Consider a profile of n = m− 1 races, m ≥ 3, where athlete a comes second in every race,

and has a total score of (m − 1)(1 − pm−2). Every other athlete comes first, third, fourth,
and so on, exactly once. This gives them a total score of 1− pm−1+1− pm−3+ . . .+1− 1 =

m− 1− pm−1 − (pm−2 − 1)/(p− 1). We want to show that the difference between the total
scores of a and every other athlete is positive, which is true if and only if:

(m− 1)(1− pm−2) > m− 1− pm−1 − pm−2 − 1

p− 1
,

−mpm−2 + pm−2 + pm−1 +
pm−2 − 1

p− 1
> 0,

mpm−1 −mpm−2 − pm + 1 > 0.

If we take the derivative with respect to p, we get m(m−1)pm−2−m(m−2)pm−3−mpm−1

that has the same sign as (m − 1)p − (m − 2) − p2. This is a parabola with vertex at
p = (m − 1)/2 and roots at 1,m − 2. Thus for 0 ≤ p < 1, this is a monotonely decreasing
function, reaching a minimum as p→ 1. At p = 1, m · 1m−1−m · 1m−2− 1m + 1 = 0, so for
the relevant values of p the difference is positive.
Case two: p = 1.
Consider the profile of case one. Athlete a has a total score of (m − 1)(m − 2) while the

other athletes (m− 1) + (m− 3) + . . . + 1 = m− 1 + (m− 3)(m− 2)/2. We want to show
that the difference between the total scores is positive:

(m− 1)(m− 2) > m− 1 +
(m− 3)(m− 2)

2
,

m2 − 3m+ 2 > m− 1 +
m2 − 5m+ 6

2
,

m2 − 3m > 0.

Which is true for m ≥ 4.
Case three: p > 1.
Consider the profile of case one, but with m > p2/(p − 1). Athlete a has a total score of

(m− 1)pm−2, the other athletes pm−1+ pm−3+ . . .+1 = pm−1+(pm−2− 1)/(p− 1). We want
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to show that the difference is positive:

(m− 1)pm−2 > pm−1 +
pm−2 − 1

p− 1
,

mpm−2 − pm−2 − pm−1 − pm−2 − 1

p− 1
> 0,

mpm−1 −mpm−2 − pm + 1 > 0,

mpm−2(p− 1)− pm + 1 > 0.

Since we assumed that m > p2/(p− 1):

mpm−2(p− 1)− pm + 1 > pm−2p2 − pm + 1 > 0.

�

Theorem 8. Generalised plurality is the only generalised scoring rule that satisfies inde-
pendence of unanimous winners and always ranks the majority winner first.

Proof. That generalised plurality satisfies the majority criterion and independence of unan-
imous winners is straightforward. We shall prove the other direction.

Suppose a generalised scoring rule satisfies independence of unanimous winners and the
majority criterion. Fix any k ≤M . We proceed by induction on rounds r.
Inductive hypothesis: Suppose for all l < r, in the lth round the scores are 1 for the

first l positions and 0 elsewhere. We will show that in the rth round the scores (sk,r1 , . . . , sk,rk )

must rank the candidates that made it to the rth round in exactly the same order as

(

r︷ ︸︸ ︷
1, . . . , 1,

k−r︷ ︸︸ ︷
0, . . . , 0).

For the base case we choose r = 0, which is satisfied trivially.
In the rth round we are concerned with those candidates that were tied in the first r − 1

rounds, and thus have exactly the same number of first places, second places, through to
(r − 1)th places. If r = k we have a perfect tie, and there is nothing more we can do with
scoring rules. Thus, we can assume that 1 ≤ r ≤ k − 1.

Since the relevant candidates have the same number of lth places for all l < r, we can
without loss of generality assume that sk,r1 = . . . = sk,rr , since the first r − 1 scores will
not change the relative total scores in any way. For convenience, we write sj = sk,rj for
j = 1, . . . , k.
Step one: We shall first show that sr > sj, for all j > r.
Consider a profile consisting of one race, a1 � . . . � ak. By the inductive hypothesis, it

is clear that the candidates that made it to the rth round are {ar, . . . , ak}. By repeatedly
applying independence of unanimous winners, it follows that the aggregate ranking must be
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a1 � . . . � ak, so ar must be ranked first among the remaining candidates. It follows that
sr ≥ sj for all j > r.

A round with all scores equal is redundant. Hence, without loss of generality, assume
sr > sz for some z > r.

If r = k − 1, the scores must be affinely equivalent to (1, . . . , 1, 0), and we are done.
Assume then that r < k − 1.

Suppose for contradiction sr = sj for some j > r. Consider a profile consisting of three
races. In all three races al, for l < r, is ranked in position l. In two races ar is ranked in
position r and aj in position j. In one race ar is ranked in position z and aj in position j.
Since neither aj nor ar have any lth positions for l < r, they have made it through to round r.
The difference between the total scores of aj and ar is positive, 3sj−2sr−sz = sr−sz. Thus,
aj beats ar. However, by applying independence of unanimous winners r − 1 times we can
delete a1 through ar−1 without changing the relative ranking of the remaining candidates,
but at that point we run into a contradiction because ar is now the majority winner and
should be ranked first. Hence, sr > sj for all j > r.
Step two: Next, we will show that all other scores are equal.
Suppose for contradiction sj > sz for some j, z > r. Choose an integer n > (sr −

sj)/(sj − sz) > 0. Consider a profile consisting of 2n + 1 races. As before, the candidates
a1 � . . . � ar−1 hold the first r− 1 positions in all races, meaning aj and ar have made it to
round r. In n + 1 races ar has position r and aj has position j. In n races ar has position
z and aj has position r. The difference between the total scores of aj and ar is positive,
nsr + (n+ 1)sj − (n+ 1)sr − nsz = sj − sr + n(sj − sz) > 0. Again we apply independence
of unanimous winners and find a contradiction that aj beats the majority winner ar. It
must follow that, sj = sz for all j, z > r and the scores (s1, . . . , sk) are affinely equivalent to

(

r︷ ︸︸ ︷
1, . . . , 1,

k−r︷ ︸︸ ︷
0, . . . , 0). �

Theorem 9. Borda is the unique scoring rule that satisfies top-winner reversal bias and one
of independence of unanimous winners or independence of unanimous losers.

Proof. That Borda satisfies independence of unanimous losers follows from Theorem 6. Let us
show that the rule satisfies top-winner reversal bias. For a race, if an athlete a gets skj = k−j
points, then for the reversed result of the race the athlete gets j− 1 = k− 1− (k− j) points.
Hence, for a profile with n races, if a gets Sa total points, then for the reversed profile the
athlete gets (k− 1)n−Sa total points. Thus, for a profile, if an athlete is the unique winner
and has a higher total score than every other athlete, then for the reversed profile this athlete
has a lower total score than every other athlete. We shall show that it is the only scoring
rule which has these properties.
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Suppose a scoring rule satisfies independence of unanimous losers and top-winner reversal
bias. We proceed by induction on the number of athletes k.
Inductive hypothesis: Suppose that for k − 1 athletes the scores are (k − 2, . . . , 1, 0).

We will show that for k athletes the scores must be affinely equivalent to (k − 1, . . . , 1, 0).
In the base case k = 2, and the only scoring rule which satisfies independence of unanimous

losers has scores affinely equivalent to (1, 0).
Consider k ≥ 3. By Proposition 4, the scores for k athletes must be affinely equivalent to

(k − 1, . . . , 2, 1, sk), with sk < 1.
If sk = 0, we are done. We will consider the two cases sk > 0 and sk < 0, and show that

both lead to contradiction.
Case one: sk > 0

Consider a profile consisting of 2(k − 1) races. In k − 1 races a1 finishes first and every
other aj finishes once at every position except for the first position. In the other k− 1 races
the reverse is true – a1 always finishes last and every other aj finishes once at every position
except for the last position. The total score of a1 is thus (k−1)2+(k−1)sk. The total score
of every other aj is k − 2 + . . .+ 1 + sk + k − 1 + . . .+ 1 = (k − 1)2 + sk which is less than
the total score of a1. For the reversed profile the total scores are the same. Hence, a1 wins
in both profiles which contradicts top-winner reversal bias.
Case two: sk < 0

We consider subcases based on whether k is odd or even.
Subcase one: k is odd.
Consider a profile consisting of k − 1 races. Athlete a1 always finishes in the middle

position (k + 1)/2, and every other aj finishes once at every position except this middle
position. The total score of a1 is thus (k − 1)2/2. The total score of every other aj is
k− 1+ . . .+1+ sk− (k− 1)/2 = (k− 1)2/2+ sk which is less than the total score of a1. For
the reversed profile the total scores are the same, contradicting top-winner reversal bias.

Subcase two: k is even.
Consider a profile consisting of 2(k−1) races. In k−1 races a1 finishes in position k/2 and

every other aj finishes once at every position except the position k/2. The result of other
k−1 races is the reverse – a1 always finishes in position (k+2)/2 and every other aj finishes
once at every position except position (k + 2)/2. The total score of a1 is thus (k − 1)2. The
total score of every other aj is 2(k−1+ . . .+1+ sk)−k/2− (k−2)/2 = (k−1)2+2sk which
is less than the total score of a1. For the reversed profile the total scores are the same, again
contradicting top-winner reversal bias.

Both cases lead to contradiction. Hence, sk = 0 and we get the Borda scores for k athletes.
The proof of the case of independence of unanimous winners is analogous. �
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Theorem 10. Geometric scoring rules with parameter 0 < p ≤ 1 are the only scoring rules
that satisfy independence of unanimous winners and independence of unanimous losers and
never rank the majority loser first.

To prove the theorem we will exploit the following auxiliary statement.

Claim 16. For each k ≥ 3 and p > 0, the function below is strictly increasing in p:

(k − 2)pk − kpk−1 + kp− k + 2.

Proof. Let us check the first order condition:

(k − 2)kpk−1 − k(k − 1)pk−2 + k > 0,

(k − 2)pk−1 − (k − 1)pk−2 + 1 > 0.

To see that the above inequality is true for all p 6= 1, consider the second derivative:

(k − 2)(k − 1)pk−2 − (k − 1)(k − 2)pk−3

=(k − 2)(k − 1)pk−3(p− 1),

This is negative for 0 < p < 1 and positive for p > 1. Thus the first derivative is decreasing
before hitting 0 at p = 1, after which it increases – meaning the first derivative is positive
for all p 6= 1. �

Proof of Theorem 10. By Theorem 6, we can restrict our attention to geometric scoring rules.
We proceed by cases on the value of p.
Case one: p < 1.
The scores are 1− pk−1, . . . , 1− p, 1− 1. The average total score is

n(k − 1− p− p2 − . . .− pk−1)
k

= n

(
1− 1− pk

k(1− p)

)
.

A majority loser gets zero points in more than half of the races and hence has a total score
lower than (1− pk−1)n/2. We will show that this is lower than the average total score, and
thus the majority loser cannot be ranked first. We wish to show:

n(1− pk−1)
2

< n

(
1− 1− pk

k(1− p)

)
,

k(1− p)(1− pk−1) < 2k(1− p)− 2(1− pk),

k − kpk−1 − kp+ kpk < 2k − 2kp− 2 + 2pk,

(k − 2)pk − kpk−1 + kp− k + 2 < 0.

This is precisely the function from Claim 16. At p = 1 the function is 0, and elsewhere it is
increasing, thus it must be negative for 0 < p < 1.
Case two: p = 1.
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The scores are k − 1, . . . , 1, 0. Any majority loser gets zero points in more than half the
races and hence has a total score lower than (k − 1)n/2, which equals to the average total
score. This fact was the motivation behind Borda’s proposal of his voting system.
Case three: p > 1.
The scores are pk−1, . . . , p, 1. For each k ≥ 3, we can construct a counterexample profile

consisting of 2nk(k− 1)+ 1 races. In nk(k− 1) races athlete ak finishes first and every other
aj finishes nk times at every position except for the first position. In the other nk(k − 1)

races the reverse is true – ak always finishes last and every other aj finishes nk times at every
position except for the last position. In the final race the ranking is a1, . . . , ak. This will
guarantee that a1 is the highest scoring athlete out of a1, . . . , ak−1

We will show that for a large enough nk, the total score of the majority loser ak is higher
than the total score of a1, the best of the other athletes. We wish to show:

nk(k − 1)(pk−1 + 1) + 1 > nk(p+ 1)(pk−2 + . . .+ 1) + pk−1,

nk

(
(k − 1)(pk−1 + 1)− (p+ 1)(pk−1 − 1)

p− 1

)
> pk−1 − 1,

nk
(
(k − 1)(pk−1 + 1)(p− 1)− (p+ 1)(pk−1 − 1)

)
> (pk−1 − 1)(p− 1),

nk((k − 2)pk − kpk−1 + kp− k + 2) > (pk−1 − 1)(p− 1).

The coefficient of nk on the left is positive since this is the function from Claim 16, which is
0 at p = 1 and increasing elsewhere, and p > 1 in this case. Thus for a large enough nk the
left hand side will dominate the right. �

Theorem 11. Generalised antiplurality is the only generalised scoring rule that satisfies
independence of unanimous losers and always ranks the majority loser last.

Proof. It is clear that generalised antiplurality satisfies these properties. To see that it
is the only generalised scoring rule to do so, suppose f is a generalised scoring rule that
satisfies independence of unanimous losers and always ranks the majority loser last. Let g
be a generalised scoring rule defined by g(P ) = rev(f(rev(P ))), where rev(P ) is the profile
formed by reversing every race result in P , and rev(R) is the ranking formed by reversing
R.

Observe that we can obtain the scoring vector for round r in g by reversing the vector
for round r in f , and multiplying the entries by -1. The majority winner in P is the
majority loser in rev(P ) and the unanimous winner in P is the unanimous loser in rev(P ),
so g satisfies independence of unanimous winners and always ranks the majority winner
first. By Theorem 8, g must be generalised plurality. Thus the scoring vector in round

r of g is (

r︷ ︸︸ ︷
1, . . . , 1,

k−r︷ ︸︸ ︷
0, . . . , 0), and since f(P ) = rev(g(rev(P ))), the scoring vector of f is
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(

k−r︷ ︸︸ ︷
0, . . . , 0,

r︷ ︸︸ ︷
−1, . . . ,−1), which is affinely equivalent to the scores for generalised antiplurality.

�

Theorem 14. Let x1, . . . , xm be independently and uniformly distributed on [a, b], and
x(1) ≥ . . . ≥ x(m) be their reordering in non-increasing order. As m→∞, the optimal scores
sj = E

[
λx

(j)
]
for λ > 1 and sj = E

[
−λx(j)

]
for 0 < λ < 1 converge to geometric scores with

parameter p = λ
b−a
m+1 .

For λ = 1 the optimal scoring rule is exactly Borda, which has been known since Laplace
(1886, p. 277–279).

Proof. Let m > 4 and c = b − a. We will show that for λ > 1, λ = 1, and 1 > λ > 0

respectively:

1 <
E
[
λx

(j)
]

λa+
c(m+1−j)

m+1

< 1 +
(c lnλ)2

8(m+ 2)
+

(c lnλ)3

18
√
3(m+ 2)(m+ 3)

+
λc(c lnλ)4

128(m+ 2)(m+ 4)
,

E
[
x(j)
]
= a+

c(m+ 1− j)
m+ 1

,

1 <
E
[
−λx(j)

]
−λa+

c(m+1−j)
m+1

< 1 +
(c lnλ)2

8(m+ 2)
+

(−c lnλ)3

18
√
3(m+ 2)(m+ 3)

+
λ−c(c lnλ)4

128(m+ 2)(m+ 4)
.

For the [0, 1]-uniform distribution, from David and Nagaraja (2003, p. 36) we get:

E
[
x(j)
]
=
m+ 1− j
m+ 1

= pj,

E
[
(x(j) − pj)2

]
=
pj(1− pj)
m+ 2

≤ 1

4(m+ 2)
,

∣∣E [(x(j) − pj)3]∣∣ = ∣∣∣∣2pj(1− 2pj)(1− pj)
(m+ 2)(m+ 3)

∣∣∣∣ ≤ √
3

9(m+ 2)(m+ 3)
,

E
[
(x(j) − pj)4

]
=
3p2j(1− pj)2

(m+ 2)2

+
6pj(1− pj)

(m+ 2)(m+ 3)(m+ 4)

[
(1− 2pj)

2 − (m+ 3)pj(1− pj)
m+ 2

]
=
3pj(1− pj) (pj(1− pj)(m− 5) + 2)

(m+ 2)(m+ 3)(m+ 4)
.

E
[
(x(j) − pj)4

]
is maximised at pj = 1/2. It follows that:

E
[
(x(j) − pj)4

]
≤ 3

16(m+ 2)(m+ 4)
.
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The k-th derivative of λx is λx(lnλ)k. If we apply Taylor series expansion with the re-
mainder in Lagrange’s form we get:

λx
(j)

= λpj + (x(j) − pj)λpj lnλ+
1

2
(x(j) − pj)2λpj(lnλ)2 +

1

6
(x(j) − pj)3λpj(lnλ)3

+
1

24
(x(j) − pj)4λz(lnλ)4,

for some z ∈ [0, 1]. Hence, for λ > 1:

λx
(j) ≤ λpj + (x(j) − pj)λpj lnλ+

1

2
(x(j) − pj)2λpj(lnλ)2 +

1

6
(x(j) − pj)3λpj(lnλ)3

+
1

24
(x(j) − pj)4λ(lnλ)4,

E
[
λx

(j)
]
≤ λpj +

λpj(lnλ)2

8(m+ 2)
+

λpj(lnλ)3

18
√
3(m+ 2)(m+ 3)

+
λ(lnλ)4

128(m+ 2)(m+ 4)
,

E
[
λx

(j)
]

λpj
< 1 +

(lnλ)2

8(m+ 2)
+

(lnλ)3

18
√
3(m+ 2)(m+ 3)

+
λ(lnλ)4

128(m+ 2)(m+ 4)
.

And for 0 < λ < 1:

λx
(j) ≤ λpj + (x(j) − pj)λpj lnλ+

1

2
(x(j) − pj)2λpj(lnλ)2 +

1

6
(x(j) − pj)3λpj(lnλ)3

+
1

24
(x(j) − pj)4(lnλ)4,

E
[
λx

(j)
]
≤ λpj +

λpj(lnλ)2

8(m+ 2)
+

λpj(− lnλ)3

18
√
3(m+ 2)(m+ 3)

+
(lnλ)4

128(m+ 2)(m+ 4)
,

E
[
λx

(j)
]

λpj
< 1 +

(lnλ)2

8(m+ 2)
+

(− lnλ)3

18
√
3(m+ 2)(m+ 3)

+
λ−1(lnλ)4

128(m+ 2)(m+ 4)
.

This establishes the upper bound. For the lower bound, observe that for each λ 6= 1, λx is
convex and hence:

E
[
λx

(j)
]
> λE[x

(j)] = λpj .

For the [a, b]-uniform distribution, c = b− a, and we have

E
[
λa+cx

(j)
]

λa+cpj
=

E
[
(λc)x

(j)
]

(λc)pj
,

from which the desired bounds follow. �

Theorem 15. Let the number of potential athletes be fixed and finite (M < ∞), and for
every number m of athletes, m ≤M , their performances x1i , . . . , xmi in each competition i be



38

drawn independently and identically from a distribution on [a, b] such that density function
f and its derivative are bounded and continuous.

Suppose b is finite and f(b) > 0. Then as λ→∞, the optimal scores sj = E
[
λx

(j)
i

]
tend

towards (but are never equivalent to) plurality. If, in addition, the number of competitions
n is bounded from above and the first M − 1 derivatives of f are bounded and continuous,
then there exists a finite λ such that for each λ > λ the optimal scoring rule is equivalent to
generalised plurality.

Suppose a is finite, and f(a) > 0. Then as λ → 0, the optimal scores sj = E
[
−λx

(j)
i

]
tend towards (but are never equivalent to) antiplurality. If, in addition, the number of
competitions n is bounded from above and the first M − 1 derivatives of f are bounded and
continuous, then there exists a finite λ such that for each 0 < λ < λ the optimal scoring rule
is equivalent to generalised antiplurality.

To prove the theorem, we will exploit the following auxiliary statements.

Claim 17. Consider a fixed m > j ≥ 1. Let x1, . . . , xm be drawn independently and
identically from a distribution on [a, b] such that density function f and its first j derivatives
are bounded and continuous, b is finite, and f(b) > 0. Let x(1) ≥ . . . ≥ x(m) be their
reordering in non-increasing order. Then

lim
λ→∞

E
[
λx

(j+1)
]

E
[
λx(j)

] = 0.

Proof. From David and Nagaraja (2003, p. 34) we have:

E
[
λx

(j)
]
=

m!

(j − 1)!(m− j)!

∫ b

a

λxf(x)(F (x))m−j(1− F (x))j−1dx.

It follows that:

E
[
λx

(j+1)
]

E
[
λx(j)

] =
(m− j)

j

(∫ b
a
λxf(x)(F (x))m−j−1(1− F (x))jdx∫ b

a
λxf(x)(F (x))m−j(1− F (x))j−1dx

)

=
(m− j)

j

(∫ b
a
(1− F (x))λxf(x)(F (x))m−j−1(1− F (x))j−1dx∫ b

a
λxf(x)(F (x))m−j(1− F (x))j−1dx

)

=
(m− j)

j

(∫ b
a
λxf(x)(F (x))m−j−1(1− F (x))j−1dx∫ b
a
λxf(x)(F (x))m−j(1− F (x))j−1dx

−
∫ b
a
λxf(x)(F (x))m−j(1− F (x))j−1dx∫ b

a
λxf(x)(F (x))m−j(1− F (x))j−1dx

)

=
(m− j)

j

(∫ b
a
λxf(x)(F (x))m−j−1(1− F (x))j−1dx∫ b
a
λxf(x)(F (x))m−j(1− F (x))j−1dx

− 1

)
.
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Hence, it is sufficient to show that

lim
λ→∞

∫ b
a
λxgm−j−1,j−1(x)dx∫ b
a
λxgm−j,j−1(x)dx

= 1,

where gk,s(x) = f(x)(F (x))k(1− F (x))s, for k = 0, . . . ,m− 1, and s = 0, . . . ,m− 2.
Since F (b) = 1, we have:

(1) gk,0(b) = f(b),
(2) for s > 0, gk,s(b) = . . . = g

(s−1)
k,s (b) = 0,

(3) g(s)k,s(b) = s!(−1)s(f(b))s+1.

Integrating by parts j times,∫ b

a

λxgk,j−1(x)dx =
λbgk,j−1(b)

lnλ
− λagk,j−1(a)

lnλ
− 1

lnλ

∫ b

a

λxg
(1)
k,j−1(x)dx

=

j−1∑
r=0

(−1)rλbg(r)k,j−1(b)
(lnλ)r+1

+ o

(
λb

(lnλ)j

)
=
λb(j − 1)!(f(b))j

(lnλ)j
(1 + o(1)),

which proves the claim. �

Claim 18. Consider a fixed m > j ≥ 1. Let x1, . . . , xm be drawn independently and
identically from a distribution on [a, b] such that density function f and its first j derivatives
are bounded and continuous, a is finite, and f(a) > 0. Let x(1) ≥ . . . ≥ x(m) be their
reordering in non-increasing order. Then

lim
λ→0

E
[
−λx(m−j)

]
E
[
−λx(m−j+1)

] = 0.

Proof. For k = 1, . . . ,m, let zk = −xk and z(m−k+1) = −x(k) be their reordering in non-
increasing order. By letting λ = 1/α, we have that:

lim
λ→0

E
[
−λx(m−j)

]
E
[
−λx(m−j+1)

] = lim
α→∞

E
[
α−x

(m−j)
]

E
[
α−x(m−j+1)

] = lim
α→∞

E
[
αz

(j+1)
]

E
[
αz(j)

] = 0,

where the last equality is true by Claim 17: we have a fixed m > j ≥ 1; z1, . . . , zm are
drawn independently and identically from a distribution on [−b,−a] whose density function
fz(x) = f(−x) and its first j derivatives are bounded and continuous; −a is finite; fz(−a) =
f(a) > 0; and z(1) ≥ . . . ≥ z(m) is the reordering in non-increasing order. �

Proof of Theorem 15. It follows immediately by placing j = 1 in the claims above and from
the fact that whenever the scores are positive and sj+1

sj
< 1

n
for all j = 1, . . . ,m−1, the scoring
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rule is equivalent to generalised plurality, and whenever the scores are negative and sm−j

sm−j+1
<

1
n
for all j = 1, . . . ,m− 1, the scoring rule is equivalent to generalised antiplurality. �

Appendix B. Complete characterisations

Let A be the countable set of potential athletes (either finite or infinite). For a finite set
of m athletes, C ⊂ A, a profile P on C is a vector of m! nonnegative integers (indexed
by the set of strict rankings on C, each such integer denotes the number of races with the
corresponding strict ranking of athletes). An anonymous ranking procedure R associates
with each finite set of athletes C ⊂ A and each profile P on C a weak ranking R(P ) on C.

For a bijection σ : C → σ(C) and a weak ranking L on C, denote by σ(L) the ranking on
σ(C) that ranks athlete σ(a) higher than σ(b) if and only if L ranks a higher than b. Given
finite sets of athletes C ⊂ A, σ(C) ⊂ A, a bijection σ : C → σ(C) and a profile P on C,
denote by σ(P ) the profile on σ(C) such that the number of races with a strict ranking L in
P equals the number of races with strict ranking σ(L) in σ(P ), for all L in P .

An anonymous ranking procedure R satisfies neutrality if R(σ(P )) = σ(R(P )), for all
finite sets of athletes C ⊂ A, σ(C) ⊂ A, each profile P on C, and each bijection σ : C →
σ(C).

An anonymous ranking procedure R satisfies electoral consistency if for each finite set
of athletes C ⊂ A, each pair of profiles P and Q on C and each pair of athletes a and b from
C the next two conditions hold:

(1) If R(P ) and R(Q) rank a higher or equal to b then R(P +Q) ranks a higher or equal
to b. P +Q is understood as standard vector addition;

(2) If R(P ) ranks a higher than b and R(Q) ranks a higher or equal to b then R(P +Q)

ranks a higher than b.

An anonymous ranking procedure R satisfies the Archimedean property if for each
finite set of athletes C ⊂ A, each pair of profiles P and Q on C, whenever R(P ) ranks
athlete a higher than b, there exists an n′ such that R(nP + Q) ranks a higher than b, for
all integers n > n′.

Proposition 19. An anonymous ranking procedure satisfies neutrality and electoral consis-
tency if and only if it is a generalised scoring rule.

An anonymous ranking procedure satisfies neutrality, electoral consistency and Archimedean
property if and only if it is a scoring rule.

Proof. For each finite set of athletes C ⊂ A, we can apply the theorem 1 of Smith (1973).
By our definition of neutrality, the scoring vectors will be the same for every set of athletes
C ′ ⊂ A whenever |C ′| = |C|. �
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Using the proposition above, we can generalise Proposition 4, Theorem 6, Theorem 8,
Theorem 9, Theorem 10, Theorem 11.

Proposition 20. An anonymous ranking procedure satisfies neutrality, electoral consistency,
Archimedean property and independence of unanimous losers if and only if it is a scoring
rule with sm1 > . . . > smm, and the scores for k athletes, sk1, . . . , skk, are affinely equivalent to
the first k scores for m athletes, sm1 , . . . , smk , for all k < m ≤M .

An anonymous ranking procedure satisfies neutrality, electoral consistency, Archimedean
property and independence of unanimous winners if and only if it is a scoring rule with
sm1 > . . . > smm and the scores for k athletes, sk1, . . . , skk, are affinely equivalent to the last k
scores for m athletes, smm−k+1, . . . , s

m
m, for all k < m ≤M .

Proposition 21. An anonymous ranking procedure satisfies neutrality, electoral consistency,
Archimedean property, independence of unanimous winners and independence of unanimous
losers if and only if it is a geometric scoring rule with parameter 0 < p <∞.

Proposition 22. Generalised plurality is the only anonymous ranking procedure that sat-
isfies neutrality, electoral consistency, independence of unanimous winners and always ranks
the majority winner first.

Proposition 23. Borda is the only anonymous ranking procedure that satisfies neutrality,
electoral consistency, Archimedean property, top-winner reversal bias and one of indepen-
dence of unanimous winners or independence of unanimous losers.

Proposition 24. Geometric scoring rules with parameter 0 < p ≤ 1 are the only anonymous
ranking procedures that satisfy neutrality, electoral consistency, Archimedean property, in-
dependence of unanimous winners and independence of unanimous losers and never rank the
majority loser first.

Proposition 25. Generalised antiplurality is the only anonymous ranking procedure that
satisfies neutrality, electoral consistency, independence of unanimous losers and always ranks
the majority loser last.

Appendix C. Violation of independence of unanimous losers

In this section we show that some well-known ordinal procedures do not satisfy indepen-
dence of unanimous losers.
Nanson’s procedure (1882) eliminates candidates round by round. In each round the

candidates with more than the average Borda scores proceed to the next round, until the
remaining candidates get equal Borda scores and are declared the winners. Consider a profile
where 7 individual rankings are acdbe (from first-ranked a to the last-ranked e), 7 – bacde,
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7 – cdbae, 1 – bcade, and 1 – bacde. In the first round, a gets 61 points, b – 57, c – 68, d –
44, e – 0, the average score is 46, and thus a, b, and c proceed to the second round, where a
gets 22 points, b – 25, c – 22, the average score is 23 and thus b wins. However, if we remove
the unanimous loser e, then in the first round a gets 38 points, b – 34, c – 45, d – 21, the
average score is 34.5 and hence b cannot win anymore.

The proportional veto core is defined as follows by Moulin (1981). For a profile with n
voters and m candidates, a candidate a is blocked if there exists a coalition of t voters and
a subset of k candidates such that each voter in the coalition ranks each candidate in the
subset higher than a, and n(m− k) < mt. All candidates that are not blocked are declared
the winners. Consider a profile with n = 3 voters and m = 3 candidates, where 2 individual
rankings are bac, and 1 – abc. It is easy to verify that a is not blocked. However, if we
remove the unanimous loser c, then a is blocked, because t = 2 voters rank k = 1 candidates
(b) higher than a, m = 2 and n(m− k) = 3 · (2− 1) < 2 · 2 = mt.

For the case of n = 2 voters and m = 2k+1 candidates, the veto-rank used in arbitrator
selection (Bloom and Cavanagh, 1986) can be defined as a generalised scoring rule. It assigns
1 point for the first k + 1 positions, and 0 points for the last k positions. The tie-breaking
scores are k, k− 1, . . . , 1, 0, . . . , 0. This rule also can be seen as an ordinal variant of average
without misery used in group recommendations (Masthoff, 2015). Consider a profile with
individual rankings abcdefg and decbafg. The best candidates in the first round, b, c, and
d, get 2 points, and in the tie-breaking round b and c get 2 points, whereas d gets 3 points
and thus wins. However, if we remove the unanimous losers g and f , then in the first round
only c gets 2 points and thus wins.

Appendix D. Computing optimal scores (Online Appendix)

D.1. Data description. The results for the IBU World Cup biathlon are based on the
2017/18, 2018/19 and 2019/20 seasons, however since there were only 7 Individual races in
the three seasons, we use the 2014/15 to the 2019/2020 seasons for the Individual category.
The data was downloaded from https://www.biathlonworld.com. The actual IBU scores
used for sprint, pursuit, and individual are 60, 54, 48, 43, 40, 38, 36, 34, 32, 31, . . . , 1, then
0 for the remaining positions. The scores used for the mass start are 60, 54, 48, 43, 40, 38,
36, 34, 32, 31, 30, . . . , 22, 21, 20, 18, 16, . . . , 2. The actual IBU prize-money (in euros)
awarded in 2019/20 for the first twenty positions is 15,000, 12,000, 9,000, 7,000, 6,000, 5,000,
4,000, 3,500, 3,000, 2,500, 2,000, 1,750, 1,500, 1,250, 1,000, 900, 800, 700, 600, 500, and then
0 for the remaining positions. Since at least 29 biathletes completed each mass start, we
restricted ourselves to 29 positions in this category and 41 positions in other categories. In
race i, the cardinal performance xai of biathlete a was calculated as their lag behind the race
winner in minutes.

https://www.biathlonworld.com
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The results of Category 500 golf events of the PGA TOUR in 2017/18 (29 events) and
2018/19 (26 events) seasons were downloaded from https://www.pgatour.com. The actual
PGA scores for first seventy positions are 500, 300, 190, 135, 110, 100, 90, 85, . . ., 60, 57,
55, . . ., 37, 35.5, . . ., 22, 21, . . ., 11, 10.5, . . ., 6, 5.8, . . . 3. The actual PGA prize-money
(in percent of the total purse) is 18, 10.9, 6.9, 4.9, 4.1, 3.625, 3.375, 3.125, 2.925, . . ., 1.925,
1.825, . . ., 1.125, 1.045, 0.965, 0.885, 0.805, 0.775, . . ., 0.595, 0.57, 0.545, 0.52, 0.495, 0.475,
. . ., 0.295, 0.279, 0.265, 0.257, 0.251, 0.245, 0.241, 0.237, 0.235, . . ., 0.205. We restricted
ourselves to seventy positions because at least seventy competitors completed each event. In
event i, the cardinal performance xai of competitor a was taken as his lag behind the event
winner in the number of strokes.

The results of twenty four athletic disciplines of the IAAF Diamond League in the 2010–
2021 seasons were downloaded from https://www.diamondleague.com. The 2020 season
contains no data because of the COVID pandemic. We dropped the results of long and
triple jump, shot put, discus and javelin throw in the last season because after the rule
change in 2021 the final ranking of the top three athletes in each event reflects only one
last attempt and thus can be different from the order of their best attempts. We dropped
events where less than eight athletes finished or where the result for the eighth position was
lower than the standard for a “Candidate for Master of Sport” under the Unified Sports
Classification System of Russia (there were three of these: 6.41 and 5.99 metres for men’s
long jump, 5.32 metres for women’s long jump). The descriptive statistics are in Table 5

The actual IAAF scores since 2017 are 8, 7, 6, 5, 4, 3, 2, 1, 0 (no points in season finales);
in 2016 the vector 10, 6, 4, 3, 2, 1, 0 was used (double points in the season finale); and
in 2010–2015 the vector 4, 2, 1, 0 (double points in season finales). In each event i, the
cardinal performance xai of athlete a was taken as their final result in seconds (running),
metres (throw and put), and decimetres (jump and vault).

In the case of the running disciplines, we restricted our analysis to the first seven positions.
This is due to the discouragement effect (Ehrenberg and Bognanno, 1990; Krumer, 2021;
Frick, 2003, p. 525), according to which athletes reduce their efforts when they perceive
they are lagging behind the leaders. To check the presence of this effect in our data, in
Table 6 and Table 7 we calculated the average and median gaps between adjacent positions.
When calculating the average (but not median) gaps, we ignored results of the eighth and
ninth positions that were lower than the standard for a Candidate for Master of Sport. These
were: 11.59, 12.08, 12.46 (men’s 100m), 23.35, 23.69, 26.30, 28.80, 80.88 (men’s 200m), 62.69
(men’s 400m), 15.64, 16.82, 19.26 (men’s 110m hurdles), 15.32, 15.80, 15.85, 20.81, 21.62,
25.11 (women’s 100m hurdles), 78.90 (men’s 400m hurdles), 65.78, 90.61 (women’s 400m
hurdles). Without ignoring such results, the average gaps between the last two positions
would have been even larger. Both the average and median gaps are almost symmetric

https://www.pgatour.com
https://www.diamondleague.com
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Table 5. IAAF Diamond League descriptive statistics

Total Included Unit of Mean Standard
Discipline events events measure result deviation
men 100 77 65 seconds 10.06 0.128

women 100 72 60 seconds 11.11 0.167
men 200 72 58 seconds 20.34 0.318

women 200 74 56 seconds 22.76 0.381
men 400 72 56 seconds 45.22 0.584

women 400 71 53 seconds 51.16 0.897
men 110H 72 55 seconds 13.30 0.185

women 100H 72 56 seconds 12.78 0.192
men 400H 72 57 seconds 49.07 0.769

women 400H 72 58 seconds 55.05 0.968
men high jump 73 68 decimetres 22.82 0.470

women high jump 71 62 decimetres 19.20 0.498
men pole vault 73 58 decimetres 56.75 1.508

women pole vault 74 57 decimetres 46.06 1.369
men long jump 63 56 decimetres 80.46 2.034

women long jump 64 51 decimetres 66.68 1.816
men triple jump 64 51 decimetres 169.0 4.506

women triple jump 64 46 decimetres 142.9 3.672
men shot put 61 54 metres 20.92 0.734

women shot put 60 36 metres 18.67 0.801
men discus throw 64 63 metres 64.62 2.121

women discus throw 64 53 metres 62.73 2.893
men javelin throw 64 56 metres 83.12 3.531

women javelin throw 64 50 metres 62.25 2.917
All disciplines 1649 1335

Notes: Mean and standard deviation are calculated for positions from first to seven.

around the middle positions, with the only exception that the gap between the last two
positions is about twice as large as the gap between the first two positions. Thus we can
confirm that the discouragement effect is pronounced in our data. From Table 8, Table 9,
and Table 10, we can observe that the effect has intensified since 2017. The ratio of the last
and second to last median gaps have increased in most cases, from two to three on average.
At this stage we have insufficient data to speculate whether this is linked to the rule change
in 2017.

D.2. Data analysis. We used uai = λx
a
i for λ > 1, uai = xai for λ = 1 and uai = −λxai

for 0 < λ < 1 as the measure of quality of athlete a in event i. In each event i, these
qualities were reordered in non-increasing order u(1)i , . . . , u

(m)
i , i.e., u(j)i is quality of the

athlete that finished at position j. By Theorem 12, the optimal scores are the expectations
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Table 6. Running: 8 athletes, 2010–2021, median and average gaps

Discipline Included Adjacent positions: median gap in seconds
events 1-2 2-3 3-4 4-5 5-6 6-7 7-8

men 100 40 0.050 0.040 0.030 0.050 0.030 0.030 0.070
women 100 39 0.050 0.060 0.060 0.040 0.030 0.060 0.080

men 200 45 0.150 0.070 0.100 0.090 0.110 0.100 0.220
women 200 42 0.135 0.095 0.160 0.065 0.140 0.090 0.285

men 400 43 0.240 0.190 0.090 0.160 0.170 0.190 0.400
women 400 44 0.305 0.270 0.255 0.180 0.285 0.255 0.620
men 110H 32 0.070 0.045 0.050 0.050 0.050 0.085 0.150

women 100H 39 0.060 0.050 0.040 0.040 0.050 0.060 0.140
men 400H 43 0.200 0.250 0.220 0.210 0.200 0.270 0.590

women 400H 46 0.310 0.310 0.400 0.210 0.285 0.360 0.975
All disciplines 413 10.76 8.85 8.95 7.70 8.54 9.77 21.48

Discipline Adjacent positions: average gap in seconds Total
1-2 2-3 3-4 4-5 5-6 6-7 7-8 gap

men 100 0.066 0.044 0.032 0.052 0.047 0.046 0.100 0.386
women 100 0.077 0.076 0.070 0.050 0.040 0.067 0.131 0.511

men 200 0.170 0.117 0.110 0.113 0.128 0.137 0.226 1.000
women 200 0.200 0.141 0.155 0.093 0.159 0.136 0.327 1.210

men 400 0.294 0.247 0.190 0.193 0.211 0.272 0.540 1.947
women 400 0.387 0.376 0.274 0.243 0.338 0.358 0.894 2.870
men 110H 0.109 0.073 0.066 0.065 0.059 0.100 0.188 0.660

women 100H 0.102 0.068 0.059 0.055 0.079 0.089 0.258 0.710
men 400H 0.313 0.403 0.264 0.296 0.243 0.348 0.762 2.629

women 400H 0.429 0.437 0.402 0.274 0.347 0.623 0.923 3.435
All disciplines 14.93 12.42 10.50 9.73 10.81 13.54 28.06 100

Notes: The normalised mean for all disciplines was calculated after each value in our data was multiplied
by 100 and divided by the total gap.

of the corresponding random variables, so we estimate them according to the sample mean:
sj = (u

(j)
1 + . . .+ u

(j)
n )/n for each j = 1, . . . ,m.

In the proof of Theorem 14 we bound the ratio of the optimal scores to the geometric
approximation by a formula of m,λ, and b − a from above. If we were to substitute the
extreme values of the men’s 100m (λ = 100,m = 7, b − a = (10.192 − 9.916) · 8/6 = 0.369)
and women’s shot put (λ = 2.091,m = 8, b− a = (19.884− 17.156) · 9/7 = 3.508) disciplines
into the formula, the bounds would be 1.045 and 1.128, respectively. Note that these bounds
are generous and the convergence is faster in practice.

We picked the geometric approximation to a scoring sequence on the following basis. Let
s1, . . . , sm be an arbitrary sequence of scores, and g1(p), . . . , gm(p) the geometric sequence
with parameter p. We normalise the scores so that s1 = g1(p) = 1 and sm = gm(p) = 0. To
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Table 7. Running: 9 athletes, 2010-2021, median and average gaps

Discipline Included Adjacent positions: median gap in seconds
events 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

men 100 25 0.050 0.040 0.020 0.030 0.020 0.010 0.030 0.090
women 100 21 0.050 0.080 0.050 0.030 0.030 0.030 0.060 0.080

men 200 13 0.100 0.080 0.050 0.050 0.060 0.080 0.070 0.150
women 200 14 0.110 0.115 0.085 0.115 0.125 0.055 0.125 0.260

men 400 13 0.270 0.140 0.200 0.090 0.150 0.220 0.210 0.740
women 400 9 0.180 0.300 0.200 0.170 0.090 0.080 0.180 0.810
men 110H 23 0.050 0.050 0.040 0.050 0.030 0.060 0.050 0.170

women 100H 17 0.070 0.050 0.040 0.040 0.060 0.030 0.050 0.140
men 400H 14 0.220 0.150 0.080 0.155 0.195 0.150 0.605 0.475

women 400H 12 0.490 0.415 0.205 0.175 0.240 0.345 0.130 0.560
All disciplines 161 9.94 9.04 6.24 6.14 6.46 6.21 9.35 21.40

Discipline Adjacent positions: average gap in seconds Total
1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 gap

men 100 0.067 0.051 0.042 0.033 0.031 0.037 0.043 0.095 0.399
women 100 0.068 0.095 0.076 0.040 0.048 0.044 0.080 0.111 0.562

men 200 0.154 0.149 0.065 0.115 0.112 0.096 0.135 0.188 1.015
women 200 0.151 0.136 0.114 0.126 0.150 0.099 0.192 0.291 1.259

men 400 0.328 0.160 0.188 0.156 0.177 0.258 0.307 0.639 2.214
women 400 0.408 0.290 0.413 0.226 0.199 0.250 0.406 0.950 3.141
men 110H 0.098 0.061 0.050 0.060 0.054 0.062 0.077 0.215 0.678

women 100H 0.068 0.086 0.049 0.061 0.077 0.055 0.081 0.143 0.621
men 400H 0.351 0.246 0.181 0.200 0.248 0.214 0.579 0.489 2.508

women 400H 0.547 0.433 0.365 0.216 0.272 0.403 0.322 0.933 3.490
All disciplines 13.90 11.68 9.40 8.40 9.16 9.21 13.71 24.54 100

Notes: The normalised mean for all disciplines was calculated after each value in our data was multiplied
by 100 and divided by the total gap.

choose p, we first suppose that all athletes are a priori equally strong. Then we fix a pair of
athletes a, b. In a given event, a finishes at position j and b at position z with probability
1/m(m− 1). Their score differences in this event are sj − sz and gj(p)− gz(p) respectively.
Both are random variables and their difference has expectation 0, so we choose a p that
minimises the variance:

p = argmin
p′

∑
j 6=z

(sj − sz − gj(p′) + gz(p
′))2.
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Table 8. Running: 8 athletes, 2010–2016, median and average gaps

Discipline Included Adjacent positions: median gap in seconds
events 1-2 2-3 3-4 4-5 5-6 6-7 7-8

men 100 21 0.040 0.040 0.040 0.040 0.040 0.030 0.060
women 100 25 0.050 0.060 0.060 0.040 0.030 0.060 0.070

men 200 29 0.140 0.090 0.110 0.090 0.120 0.100 0.230
women 200 26 0.115 0.070 0.120 0.060 0.150 0.065 0.240

men 400 34 0.240 0.190 0.110 0.155 0.160 0.190 0.345
women 400 28 0.265 0.265 0.260 0.195 0.315 0.310 0.570
men 110H 23 0.070 0.040 0.050 0.050 0.060 0.090 0.130

women 100H 28 0.065 0.050 0.035 0.035 0.045 0.055 0.140
men 400H 29 0.180 0.190 0.170 0.190 0.220 0.190 0.590

women 400H 31 0.390 0.280 0.290 0.230 0.310 0.460 0.870
All disciplines 274 10.47 8.54 8.66 7.45 9.48 9.83 20.06

Discipline Adjacent positions: average gap in seconds Total
1-2 2-3 3-4 4-5 5-6 6-7 7-8 gap

men 100 0.065 0.051 0.037 0.050 0.053 0.055 0.064 0.375
women 100 0.079 0.074 0.074 0.050 0.042 0.072 0.130 0.523

men 200 0.159 0.122 0.117 0.121 0.125 0.145 0.254 1.043
women 200 0.170 0.109 0.144 0.088 0.167 0.111 0.260 1.049

men 400 0.287 0.261 0.213 0.195 0.189 0.259 0.511 1.914
women 400 0.352 0.302 0.293 0.269 0.387 0.431 0.930 2.965
men 110H 0.106 0.073 0.073 0.054 0.067 0.103 0.161 0.636

women 100H 0.099 0.068 0.054 0.062 0.076 0.078 0.260 0.698
men 400H 0.242 0.283 0.237 0.241 0.262 0.305 0.849 2.420

women 400H 0.488 0.408 0.348 0.306 0.365 0.719 0.967 3.602
All disciplines 14.52 11.80 10.86 9.79 11.55 14.09 27.39 100

Notes: The normalised mean for all disciplines was calculated after each value in our data was multiplied
by 100 and divided by the total gap.

The argument above justifies a distance measure that we use to compare closeness between
any pair of normalised scoring sequences:

(3) d(s, t) =

√
1

4(m− 2)

∑
j 6=z

(sj − sz − tj + tz)2,

where the factor 1/(4(m − 2)) normalises the distance between plurality and antiplurality
to 1.

In other words, for the geometric approximation to a normalised scoring sequence, we
choose a parameter p that minimises the distance to the scoring sequence. Similarly, for the
optimal approximation to a scoring sequence, we choose a parameter λ that minimises the
distance to the scoring sequence.
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Table 9. Running: 8 athletes, 2017–2021, median and average gaps

Discipline Included Adjacent positions: median gap in seconds
events 1-2 2-3 3-4 4-5 5-6 6-7 7-8

men 100 17 0.060 0.040 0.020 0.050 0.030 0.040 0.080
women 100 12 0.055 0.070 0.060 0.040 0.030 0.055 0.095

men 200 13 0.160 0.050 0.080 0.060 0.100 0.060 0.180
women 200 14 0.210 0.190 0.180 0.075 0.110 0.110 0.360

men 400 9 0.300 0.140 0.090 0.200 0.180 0.150 0.590
women 400 13 0.230 0.290 0.200 0.170 0.290 0.160 0.500
men 110H 7 0.110 0.050 0.030 0.090 0.030 0.100 0.420

women 100H 10 0.075 0.055 0.060 0.035 0.060 0.075 0.225
men 400H 11 0.400 0.510 0.240 0.430 0.200 0.310 0.630

women 400H 12 0.155 0.565 0.445 0.125 0.285 0.195 1.020
All disciplines 118 12.29 10.94 8.45 8.23 7.94 8.75 26.76

Discipline Adjacent positions: average gap in seconds Total
1-2 2-3 3-4 4-5 5-6 6-7 7-8 gap

men 100 0.066 0.038 0.024 0.055 0.038 0.038 0.145 0.404
women 100 0.078 0.069 0.062 0.050 0.037 0.058 0.132 0.487

men 200 0.198 0.128 0.090 0.082 0.136 0.135 0.169 0.938
women 200 0.251 0.188 0.175 0.088 0.156 0.179 0.397 1.434

men 400 0.319 0.196 0.100 0.186 0.296 0.322 0.649 2.067
women 400 0.354 0.517 0.242 0.198 0.282 0.193 0.744 2.530
men 110H 0.126 0.054 0.057 0.091 0.047 0.104 0.317 0.797

women 100H 0.120 0.062 0.073 0.035 0.083 0.126 0.271 0.770
men 400H 0.564 0.604 0.287 0.419 0.221 0.380 0.659 3.134

women 400H 0.269 0.499 0.531 0.179 0.344 0.433 0.780 3.036
All disciplines 15.87 13.08 9.83 9.08 10.28 12.73 29.12 100

Notes: The normalised mean for all disciplines was calculated after each value in our data was multiplied
by 100 and divided by the total gap. We included only the events with actual Borda scores used, i.e., season
finales were excluded from this table.

Note that if we normalised the scoring sequences so that their sums are equal, s1+. . .+sm =

t1+ . . .+ tm = 1, and sm = tm = 0, then we could have motivated another distance measure:

r(s, t) =

√√√√(m− 1)

(m− 2)

∑
j

(sj − tj)2.

D.3. Choice of parameter. We have briefly argued that a choice of λ > 1 can be inter-
preted as the organiser valuing the possibility of exceptional performance more than consis-
tency, while a λ < 1 represents that an organiser is more concerned that an athlete never
performs poorly in any given event.
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Table 10. Running: 8 and 9 athletes, median gaps between three last positions

2010-2016 2017-2021
Included Second Last Included Second Last

Discipline events to last gap Ratio events to last gap Ratio
men 100 31 0.030 0.090 3.000 24 0.025 0.075 3.000

women 100 33 0.060 0.080 1.333 18 0.055 0.095 1.727
men 200 31 0.100 0.190 1.900 17 0.060 0.180 3.000

women 200 29 0.070 0.280 4.000 18 0.105 0.345 3.286
men 400 36 0.190 0.465 2.447 13 0.180 0.590 3.278

women 400 30 0.310 0.575 1.855 16 0.205 0.760 3.707
men 110H 31 0.070 0.140 2.000 15 0.050 0.330 6.600

women 100H 32 0.050 0.140 2.800 15 0.070 0.240 3.429
men 400H 34 0.230 0.575 2.500 14 0.330 0.555 1.682

women 400H 34 0.465 0.660 1.419 15 0.200 0.790 3.950
All disciplines 321 2.207 165 3.140

Notes: The ratio for all disciplines is computed as the geometric mean. All season finales were excluded
from this table.

If we think in terms of prize money rather than score, there is a more direct interpretation
of λ > 1: how much more is an organiser willing to pay an athlete whose performance is
one cardinal unit higher? Thus in golf a λ = 1.4 displays a willingness to pay an athlete
who completes a score with one strike less, 1.4 times more prize money. In the hypothetical
example of using λ = 100 in men’s 100m sprint (Figure 4), an athlete that finishes the event
one second earlier will be rewarded one hundred times more. Note that despite the incredibly
high choice of λ, the resulting scoring vector is not particularly convex – this reflects the
fact that one second is a very long time in this event, so valuing it by a factor of 100 is
not as extreme as it may sound. In women’s 200m (Figure 5), by contrast, a λ of only 4.72
produced a similar degree of convexity. The intuition here is that variance in the 200m event
is roughly three times as high as in 100m, so the reward for a one second lead in 100m should
be commensurate with the reward for a three second lead in 200m, and 1001 = 4.643.

The particular values of λ in these examples were chosen by assuming that the men’s 100m
standard deviation (0.128) has the same level of “quality” as the women’s 200m standard
deviation (0.381), so we wanted λm, λw such that λ0.128m = λ0.381w .

D.4. Results. Here we include the figures that were omitted in the main text of the paper.
The results for Individual races of the IBU World Cup biathlon in 2017/18, 2018/19 and
2019/20 seasons are presented in Figure 3. The results for twenty four athletic disciplines
of the IAAF Diamond League in the 2010–2021 seasons are presented in Figure 4, Figure 5,
and Figure 6.

All data and calculations are available from the authors on request.
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Figure 3. Scores in IBU World Cup biathlon

Notes: Scores used in 2017/18, 2018/19 and 2019/20 seasons compared with optimal scores. The x-axis is
the position, the y-axis the normalised score. Scores for first position were normalised to 100, for forty-first
position to 0. The optimal scores for λ = 1 (purple solid, higher curve) and λ = 1.14 (black solid, lower
curve, performance measured in minutes) approximate the actual IBU scores used (red long dash two dots).
The approximation distance is in brackets and calculated by formula (3).
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Figure 4. Scores in IAAF Diamond League athletics

Notes: The optimal scores in 2010–2021 seasons approximated by geometric scores. The x-axis is the position,
the y-axis the normalised score. Scores for first position were normalised to 100, for seventh position to 0.
The eighth position is excluded to account for the discouragement effect in running. Observe that the actual
Borda scores used since 2017 (geometric p = 1, red long dash two dots) closely approximate most of the
optimal scores for λ = 1 (purple solid, higher curve). The curves for λ > 1 (black solid, lower curve,
performance measured in seconds) illustrate how closely other geometric scores (blue dash, higher curve, and
brown dash, lower curve) can approximate the optimal scores on this data. The approximation distance is
in brackets and calculated by formula (3), and denotes the distance to the first curve without brackets above
the approximation in the legend.



52

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th

Opt λ = 1.00

Geo p = 1.00 (0.051)

Geo p = 1.03 (0.047)

Opt λ = 6.43

Geo p = 1.40 (0.051)

Men, 58 events

200m

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th

Opt λ = 1.00

Geo p = 1.00 (0.051)

Geo p = 1.06 (0.039)

Opt λ = 4.72

Geo p = 1.37 (0.036)

Women, 56 events

200m

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th

Opt λ = 1.00

Geo p = 1.00 (0.077)

Geo p = 1.01 (0.077)

Opt λ = 2.24

Geo p = 1.39 (0.057)

Men, 54 events

Shot Put

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th

Opt λ = 1.00

Geo p = 1.00 (0.140)

Geo p = 1.07 (0.133)

Opt λ = 2.09

Geo p = 1.65 (0.085)

Women, 36 events

Shot Put

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th

Opt λ = 1.00

Geo p = 1.00 (0.069)

Geo p= 0.998 (0.069)

Opt λ = 1.32

Geo p = 1.37 (0.058)

Men, 63 events

Discus Throw

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th

Opt λ = 1.00

Geo p = 1.00 (0.115)

Geo p = 1.08 (0.103)

Opt λ = 1.23

Geo p = 1.64 (0.085)

Women, 53 events

Discus Throw

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th

Opt λ = 1.00

Geo p = 1.00 (0.106)

Geo p = 0.96 (0.102)

Opt λ = 1.18

Geo p = 1.38 (0.073)

Men, 56 events

Javelin Throw

 

0

20

40

60

80

100

1st 2nd 3rd 4th 5th 6th 7th 8th

Opt λ = 1.00

Geo p = 1.00 (0.089)

Geo p = 0.99 (0.089)

Opt λ = 1.22

Geo p = 1.45 (0.067)

Women, 50 events

Javelin Throw

Figure 5. Scores in IAAF Diamond League athletics

Notes: The optimal scores in 2010–2021 seasons approximated by geometric scores. The x-axis is the
position, the y-axis the normalised score. Scores for first position were normalised to 100, for seventh (or
eighth) position to 0. The eighth position is excluded to account for the discouragement effect in running.
Observe that the actual Borda scores used since 2017 (geometric p = 1, red long dash two dots) closely
approximate most of the optimal scores for λ = 1 (purple solid, higher curve). The curves for λ > 1 (black
solid, lower curve, performance measured in seconds and metres) illustrate how closely other geometric scores
(blue dash, higher curve, and brown dash, lower curve) can approximate the optimal scores on this data.
The approximation distance is in brackets and calculated by formula (3), and denotes the distance to the
first curve without brackets above the approximation in the legend.
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Figure 6. Scores in IAAF Diamond League athletics

Notes: The optimal scores in 2010–2021 seasons approximated by geometric scores. The x-axis is the
position, the y-axis the normalised score. Scores for first position were normalised to 100, for eighth position
to 0. Observe that the actual Borda scores used since 2017 (geometric p = 1, red long dash two dots) closely
approximate most of the optimal scores for λ = 1 (purple solid, higher curve). The curves for λ > 1 (black
solid, lower curve, performance measured in decimetres) illustrate how closely other geometric scores (blue
dash, higher curve, and brown dash, lower curve) can approximate the optimal scores on this data. The
approximation distance is in brackets and calculated by formula (3), and denotes the distance to the first
curve without brackets above the approximation in the legend.
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Öztürk, Z. E. (2020). Consistency of scoring rules: a reinvestigation of composition-
consistency. International Journal of Game Theory, 49:801–831.
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