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Abstract  
Conditional quantile regression has been considered in the spatial econometric literature as a robust alternative 
to the standard linear regression when data are characterized by non-normality. They are also complementary 
to the conditional mean model in that they provide a complete representation of the conditional distribution 
of Y given the predictors and not only their conditional mean. So far the literature concentrated on conditional 
quantile spatial lag specifications which incorporate spatial correlation in the form of a spatially lagged variable 
included in the list of predictors. This paper aims at exploring the other side of the moon by specifying conditional 
spatial quantile models in the form of a spatial error correlation and by suggesting feasible estimators of the 
parameters involved. We propose a procedure analogous to the feasible GLS suggested for the standard linear 
models, we illustrate its use on real data and we examine its small sample properties through a set of Monte 
Carlo experiment.  
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1.  Introduction 

Conditional quantile regression models (Koenker and Bassett, 1978; Koenker, 2005; Hao and Naiman, 
2007) provide a robust alternative to the standard linear regression when data are characterized by non-
normality features such as skewness, heavy tails and outliers. Since then, the spatial econometric 
literature has concentrated (with few remarkable exceptions, see Dai and Tian, 2019) on conditional 
quantile spatial lag specifications (McMillen, 2013; Su and Yang, 2011) which incorporate substantive 
spatial correlation in the form of a spatially lagged variable included in the list of predictors. However, 
spatial correlation can often manifest itself also in the form of a spatial lag in the error term which 
captures the effects of omitted variables, a situation typical of many individual studies where some of 
the predictors maybe not accessible because they are protected by confidentiality. This paper aims at 
exploring the other side of the moon of spatial conditional quantile by specifying models in the form of 
a spatial correlation present in the error term and by suggesting feasible estimators of the parameters.  
 

2. A two-step estimation procedure for a spatial error quantile regression 

In order to remove the negative effects on estimators’ properties induced by the presence of a positive 
residual spatial correlation, in the area of quantile regression the spatial econometric literature, as said, 
has concentrated on the spatial lag specification (McMillen, 2013). Here we consider the spatial error 
alternative. In the case of a linear regression on the mean value, a spatial error model (SEM) is specified 
as follows: 
 
𝑦 = 𝑥𝛽	+	𝑢          (4) 
𝑢 = 𝜌𝑊𝑢 + 𝜖          (5) 
𝜖 ~
""# 𝑁(0, 𝜎!")          (6) 

 
From Equation (5) we have that: 
 
(𝐼 − 𝜌𝑊)𝑢 = 𝜖         (7) 
 
and, hence, from Equation (4) we have: 
 
(𝐼 − 𝜌𝑊)𝑦 = (𝐼 − 𝜌𝑊)𝑥𝛽 + 𝜖       (8) 
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where the residuals are now “cleaned” from the spatial correlation and can be assumed to be 
independently distributed.  
Our proposal is to follow the same strategy for a quantile regression adopting the following two-step 
procedure. In the first step, we postulate the following system of equations (for a related approach see 
Chernozhukov and Hansen, 2005 and Su and Yang, 2007): 
 
𝑄#(𝜏|𝑥) = 𝑥𝛽          (9) 
 
𝑢 = 𝑄#(𝜏|𝑥) − 𝑥𝛽         (10) 
 
𝑢 = 𝜌𝑊𝑢 + 𝜖          (11) 

𝜖
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           (12) 
 
where in Equation (12), to capture the presence of skewness in the residuals, the error term 𝜖 is assumed 
i.i.d. distributed as a (standardized) Chi-square with 2 degrees of freedom. We will refer to this model 
as the Spatial Error Quantile Model (SEQM). In order to implement our estimation strategy, we can 
estimate the 𝜌	parameter in Equation (11) using a GMM procedure. The GMM approach is particularly 
useful in this context because, as it is well known, it is a distribution-free procedure particularly efficient 
when normality cannot be assumed. We assume that we can estimate the parameter 𝜌 using the same 
moment conditions suggested by Keleijan and Prucha (1978) (see also Arbia, 2014 for further details). 
Let us refer to the estimator thus obtained as to 𝜌6. We can then define the transformed variables as 
follows: 
 
𝑦∗ = (𝐼 − 𝜌6𝑊)𝑦	𝑎𝑛𝑑	𝑥∗ = (𝐼 − 𝜌6𝑊)𝑥       (13) 
 
and we can derive the optimal parameters’ values with a linear programming optimization of the 
equation: 
  
𝑄#∗(𝜏|𝑥∗) = 𝑥∗𝛽         (14) 
 
 

3. A Monte Carlo study 

The example presented in the previous section shows that the suggested two-step procedure might be 
effective in removing residual spatial correlation from the quantile regressions thus overcoming the 
problems of reduced efficiency in the parameters’ estimators. In this section, in order to explore the 
small sample properties of this procedure, we will report the results of a simulation study. In our 
experiments, we considered a sample of n = 100 data laid on a 10-by-10 regular square lattice grid 
generated through the following set of equations: 
 
𝑦 = 𝑥𝛽 + 𝑢          (15) 
𝑢 = 𝜌𝑊𝑢 + 𝜖          (16) 
𝜖~ %%%&"

"
           (17) 

 
with the vector 𝛽 ≡ [𝛽', 𝛽"]	including a constant term, W a rook’s case defined weight matrix and all 
the other symbols previously defined. From Equation (16) we have: 
 
𝑢 = (𝐼 − 𝜌𝑊)&'𝜖         (18) 
 
Hence, from Equation (22) we obtain: 
 
𝑦 = 𝑥𝛽 + (𝐼 − 𝜌𝑊)&'𝜖         (19) 
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where we generate 𝜖 as described in Equation (17) and x as an independent N(0,1). We further set 𝛽' =
10	 and 𝛽" = 0.5. A single realization of such a process is reported in Figure 6 which displays the OLS 
and the median regression. 
 

 
Figure 6: OLS and median regression in one single run of the Monte Carlo simulation. 
 
We then fit to the simulated data the traditional conditional quantile regression and the quantile 
regression on the transformed variables as shown in Equation (13), using a linear programming 
optimization with 𝜌6 estimated with the GMM procedure suggested by Keleijan and Prucha (1978). 
Conclusions 
This paper aims at introducing a procedure to fit conditional quantile regression models to spatial data 
using the spatial error specification. While the effects of the suggested procedures still need to be 
properly investigated, the first results are encouraging showing more efficient estimates of the model’s 
parameters and of the hypothesis testing procedures on residuals’ spatial correlation. 
Future developments include the possibility of estimating from the data the degrees of freedom of the 
chi-squared distribution in the case of skewed datasets, and the treatment of other forms of non-
normality (kurtosis, multi-modoalities etc.). 
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